設拋物線的焦點為,為拋物線上一點,,則的取值范圍是    .

試題分析:因為在拋物線的內(nèi)部,且拋物線的準線為,設點到準線的距離為,則
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設M、N為拋物線C:y=x2上的兩個動點,過M、N分別作拋物線C的切線l1、l2,與x軸分別交于A、B兩點,且l1與l2相交于點P,若|AB|=1.

(1)求點P的軌跡方程;
(2)求證:△MNP的面積為一個定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設點P是曲線y=x2上的一個動點,曲線y=x2在點P處的切線為l,過點P且與直線l垂直的直線與曲線y=x2的另一交點為Q,則PQ的最小值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是拋物線為上的一點,以S為圓心,r為半徑()做圓,分別交x軸于A,B兩點,連結(jié)并延長SA、SB,分別交拋物線于C、D兩點。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負半軸于點E,若EC : ED =" 1" : 3,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線的焦點軸正半軸上,過斜率為的直線軸交于點,且(為坐標原點)的面積為,求拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點,過點F且與直線相切的動圓圓心為點M,記點M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若點A的坐標為,與曲線E相交于B,C兩點,直線AB,AC分別交直線于點S,T.試判斷以線段ST為直徑的圓是否恒過兩個定點?若是,求這兩個定點的坐標;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是拋物線 的焦點,、是該拋物線上的兩點,,則線段的中點到軸的距離為(  )
A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的焦點坐標為_________________;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線:與拋物線:交于兩點,與軸交于,若,則_______.[

查看答案和解析>>

同步練習冊答案