1.設隨機變量?服從?~N(2,9),若P(?>c+1)=P(?<c-1),則c=( 。
A.0B.$\frac{1}{2}$C.1D.2

分析 畫正態(tài)曲線圖,由對稱性得c-1與c+1的中點是2,由中點坐標公式得到c的值.

解答 解:∵N(2,32),
∴P(ξ>c+1)=1-P(ξ≤c+1)=Φ($\frac{c+1-2}{3}$),
P(ξ<c-1)=Φ($\frac{c-1-2}{3}$),
∴Φ($\frac{c-3}{3}$)+Φ($\frac{c-1}{3}$)=1,
∴1-Φ($\frac{3-c}{3}$)+Φ($\frac{c-1}{3}$)=1,
解得c=2,
故選:D.

點評 本題考查正態(tài)分布,正態(tài)曲線有兩個特點:(1)正態(tài)曲線關(guān)于直線x=μ對稱;(2)在正態(tài)曲線下方和x軸上方范圍內(nèi)的區(qū)域面積為為1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}中,已知${a_1}=\frac{2}{3}$,a2=1,2an=3an-1-an-2(n≥3).
(1)求a3的值;
(2)證明:數(shù)列{an-an-1}(n≥2)是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,AC=2ED,AC∥平面EDB,AC⊥平面BCD,平面ACDE⊥平面ABC.
(Ⅰ)求證:AC∥ED;
(Ⅱ)求證:DC⊥BC;
(Ⅲ)當BC=CD=DE=1時,求二面角A-BE-D的余弦值;
(Ⅳ)在棱AB上是否存在點P滿足EP∥平面BDC;
(Ⅴ)設$\frac{CD}{CE}$=k,是否存在k滿足平面ABE⊥平面CBE?若存在求出k值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=axlnx(a為非零常數(shù))圖象上點(e,f(e))處的切線與直線y=2x平行(其中e=2.71828…).
(Ⅰ)求函數(shù)f(x)解析式;
(Ⅱ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅲ)若斜率為k的直線與曲線y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)兩點,求證:x1<$\frac{1}{k}$<x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),當x∈[0,1]時,|f(x)|≤1,則(a+b)c的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當a=2時,判斷函數(shù)f(x)的單調(diào)性;
(2)當a=4時,給出兩組直線:6x+y+m=0與3x-y+n=0,其中m,n為常數(shù),判斷這兩類直線中是否存在y=f(x)的切線,若存在,求出該切線方程.
(3)設定義在D上的函數(shù)y=h(x)在點P(x0,h(x0))處的切線方程為l:y=g(x),若$\frac{h(x)-g(x)}{{x-{x_0}}}>0$在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點”,當a=4時,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)y=$\sqrt{3}$sin2x+cos2x的最小正周期為( 。
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知△ABC,AB=AC=4,BC=2,點D為AB延長線上一點,BD=2,連結(jié)CD,則△BDC的面積是$\frac{\sqrt{15}}{2}$,cos∠BDC=$\frac{\sqrt{10}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在正方體ABCD-A1B1C1D1中,E為棱CD的中點,則( 。
A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC

查看答案和解析>>

同步練習冊答案