6.已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當(dāng)a=2時(shí),判斷函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=4時(shí),給出兩組直線:6x+y+m=0與3x-y+n=0,其中m,n為常數(shù),判斷這兩類直線中是否存在y=f(x)的切線,若存在,求出該切線方程.
(3)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),若$\frac{h(x)-g(x)}{{x-{x_0}}}>0$在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點(diǎn)”,當(dāng)a=4時(shí),試問y=f(x)是否存在“類對稱點(diǎn)”,若存在,請至少求出一個(gè)“類對稱點(diǎn)”的橫坐標(biāo),若不存在,請說明理由.

分析 (1)當(dāng)a=2時(shí),利用導(dǎo)數(shù)即可判斷函數(shù)f(x)的單調(diào)性.
(2)a=4,先求導(dǎo),再根據(jù)基本不等式得到f′(x)≥4$\sqrt{2}$-6,不存在6x+y+m=0這類直線的切線,存在3x-y+n=0這類直線的切線
(3)問題等價(jià)于y=g(x)=$\frac{{2x}_{0}^{2}-6{x}_{0}+4}{{x}_{0}}$(x-x0)+x02-6x0+4lnx0,令$ϕ(x)={x_0}{x^2}-(2{x^2}_0+4)x+4lnx•{x_0}+x_0^3+4{x_0}-4ln{x_0}•{x_0}$,由此入手,能夠求出一個(gè)“類對稱點(diǎn)”的橫坐標(biāo).

解答 解:(1)函數(shù)f(x)的定義域是(0,+∞).
∵f(x)=x2-4x+2lnx,
∴$f'(x)=2x-4+\frac{2}{x}=\frac{{2{x^2}-4x+2}}{x}=\frac{{2{{(x-1)}^2}}}{x}≥0$
∵f'(x)>0在定義域(0,+∞)內(nèi)恒成立,
∴函數(shù)f(x)在(0,+∞)都是單調(diào)遞增.
(2)當(dāng)a=4時(shí),f(x)=x2-6x+4lnx,
則$f'(x)=\frac{{2{x^2}-6x+4}}{x}$,
∵x>0,
∴$f'(x)=2(x+\frac{2}{x}-3)≥4\sqrt{2}-6$.
∴曲線f(x)在定義域內(nèi)的任意一點(diǎn)處的切線斜率都大于或等于$4\sqrt{2}-6$,
而$3∈[{4\sqrt{2}-6,+∞}]$,
∴曲線f(x)可以與3x-y+n=0中的一條直線相切,另一組直線無切線.
此時(shí)切線的斜率是3,對應(yīng)的切線方程式y(tǒng)=3x-20+8ln2或$y=3x-\frac{17}{4}-4ln2$;
(3)由(2)得函數(shù)y=f(x)在點(diǎn)P(x0,f(x0))處的切線方程為
l:y=g(x)=$\frac{{2x}_{0}^{2}-6{x}_{0}+4}{{x}_{0}}$(x-x0)+x02-6x0+4lnx0
若函數(shù)f(x)=x2-6x+4lnx存在“類對稱點(diǎn)”P(x0,f(x0)),
則等價(jià)與當(dāng)0<x<x0時(shí),f(x)<g(x),當(dāng)x<x0時(shí),f(x)>g(x)恒成立,
①當(dāng)0<x<x0時(shí),f(x)<g(x),恒成立,
等價(jià)于當(dāng)0<x<x0時(shí),${x^2}-6x+4lnx<\frac{{2{x^2}_0-6{x_0}+4}}{x_0}(x-{x_0})+{x^2}_0-6{x_0}+4ln{x_0}$恒成立,
即當(dāng)0<x<x0時(shí),${x_0}{x^2}-(2{x^2}_0+4)x+4{x_0}•lnx+{x^3}_0+4{x_0}-4{x_0}•ln{x_0}<0$恒成立.
令$ϕ(x)={x_0}{x^2}-(2{x^2}_0+4)x+4lnx•{x_0}+x_0^3+4{x_0}-4ln{x_0}•{x_0}$,
則ϕ(x0)=0,要使ϕ(x)<0在0<x<x0恒成立,只要ϕ(x)在(0,x0)單調(diào)遞增即可.
又∵$ϕ'(x)=2{x_0}x-(2{x^2}_0+4)+\frac{{4{x_0}}}{x}=\frac{{2(x{\;}_0x-2)(x-{x_0})}}{x}$,
∴${x_0}≤\frac{2}{x_0}$,即$0<{x_0}≤\sqrt{2}$.
②同理當(dāng)x>x0時(shí),f(x)>g(x)恒成立,${x_0}≥\sqrt{2}$,
∴${x_0}=\sqrt{2}$.
∴y=f(x)存在“類對稱點(diǎn)”,其中一個(gè)“類對稱點(diǎn)”的橫坐標(biāo)是${x_0}=\sqrt{2}$.

點(diǎn)評 本題考查函數(shù)的單調(diào)區(qū)間的求法,考查類對稱點(diǎn)的求法.解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化,注意導(dǎo)數(shù)性質(zhì)的靈活運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.-2是10與x的等差中項(xiàng),則x=-14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某網(wǎng)絡(luò)營銷部門為了統(tǒng)計(jì)某市網(wǎng)友“雙11”在某淘寶店的網(wǎng)購情況,隨機(jī)抽查了該市當(dāng)天60名網(wǎng)友的網(wǎng)購金額情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表(如圖):
網(wǎng)購金額
(單位千元)
頻數(shù)頻率
(0,0.5]30.05
(0.5,1]xp
(1,1.5]90.15
(1.5,2]150.25
(2,2.5]180.30
(2.5,3]yq
合計(jì)601.00
若網(wǎng)購金額超過2千元的顧客定義為“網(wǎng)購達(dá)人”,網(wǎng)購金額不超過2千元的顧客定義為“非網(wǎng)購達(dá)人”,已知“非網(wǎng)購達(dá)人”與“網(wǎng)購達(dá)人”人數(shù)比恰好為3:2.
(1)試確定x,y,p,q的值,并補(bǔ)全頻率分布直方圖;
(2)試營銷部門為了進(jìn)一步了解這60名網(wǎng)友的購物體驗(yàn),從“非網(wǎng)購達(dá)人”、“網(wǎng)購達(dá)人”中用分層抽樣的方法確定5人,若需從這5人中隨機(jī)選取2人進(jìn)行問卷調(diào)查,則恰好選取1名“網(wǎng)購達(dá)人”和1名“非網(wǎng)購達(dá)人”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,底面是邊長為2$\sqrt{3}$的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=2$\sqrt{6}$,M、N分別為PB,PD的中點(diǎn).
(Ⅰ)證明:MN∥平面ABCD;
(Ⅱ)求異面直線NC與BP所成角的余弦值;
(Ⅲ)過點(diǎn)A作AQ⊥PC,垂足為點(diǎn)Q,求二面角A-MN-Q的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)隨機(jī)變量?服從?~N(2,9),若P(?>c+1)=P(?<c-1),則c=(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知cosx=$\frac{3}{4}$,則cos2x=(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{1}{8}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)是定義在R上的偶函數(shù),且f(x+4)=f(x-2).若當(dāng)x∈[-3,0]時(shí),f(x)=6-x,則f(919)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列各式的運(yùn)算結(jié)果為純虛數(shù)的是( 。
A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}滿足a1+3a2+…+(2n-1)an=2n.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{{a}_{n}}{2n+1}$}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案