【題目】如圖①,四邊形中,,,,的中點(diǎn).沿折起到的位置,如圖②.

)求證:平面平面;

)若,求與平面所成角的正弦值.

【答案】)證明見(jiàn)解析;(.

【解析】

)在圖①中,,,根據(jù)翻折的性質(zhì)得出在圖②中,,,利用線面垂直的判定定理得出平面,再利用面面垂直的判定定理可證得平面平面

)以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、、軸建立空間直角坐標(biāo)系,計(jì)算出平面的一個(gè)法向量,利用空間向量法可求得與平面所成角的正弦值.

)因?yàn)樗倪呅?/span>中,,,,的中點(diǎn),

,則四邊形為矩形,所以,即,.

在圖②中,,,

又因?yàn)?/span>,所以平面.

又因?yàn)?/span>平面,所以平面平面.

)由

,,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、軸建立空間直角坐標(biāo)系,

,得、、,

,.

設(shè)平面的法向量為,

,即,令,得,可得,

,設(shè)直線與平面所成角為

所以.

因此,直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是以為直徑的圓上的動(dòng)點(diǎn)(異于,),已知,,平面,四邊形為平行四邊形.

1)求證:平面;

2)當(dāng)三棱錐的體積最大時(shí),求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某度假酒店為了解會(huì)員對(duì)酒店的滿意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對(duì)酒店的“住宿滿意度”與“餐飲滿意度”都分為五個(gè)評(píng)分標(biāo)準(zhǔn):1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統(tǒng)計(jì)結(jié)果如下表(住宿滿意度為,餐飲滿意度為

(1)求“住宿滿意度”分?jǐn)?shù)的平均數(shù);

(2)求“住宿滿意度”為3分時(shí)的5個(gè)“餐飲滿意度”人數(shù)的方差;

(3)為提高對(duì)酒店的滿意度,現(xiàn)從的會(huì)員中隨機(jī)抽取2人征求意見(jiàn),求至少有1人的“住宿滿意度”為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾分類(lèi)是對(duì)垃圾進(jìn)行有效處置的一種科學(xué)管理方法,為了了解居民對(duì)垃圾分類(lèi)的知曉率和參與率,引導(dǎo)居民積極行動(dòng),科學(xué)地進(jìn)行垃圾分類(lèi),某小區(qū)隨機(jī)抽取年齡在區(qū)間[2585]上的50人進(jìn)行調(diào)研,統(tǒng)計(jì)出年齡頻數(shù)分布及了解垃圾分類(lèi)的人數(shù)如表:

1)填寫(xiě)下面2x2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為以65歲為分界點(diǎn)居民對(duì)了解垃圾分類(lèi)的有關(guān)知識(shí)有差異;

2)若對(duì)年齡在[45,55),[25,35)的被調(diào)研人中各隨機(jī)選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解垃圾分類(lèi)的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

參考公式和數(shù)據(jù)K2,其中na+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一場(chǎng)突如其來(lái)的新冠肺炎疫情在全國(guó)蔓延,在黨中央的堅(jiān)強(qiáng)領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國(guó)人民眾志成城、團(tuán)結(jié)一心,共抗疫情。每天測(cè)量體溫也就成為了所有人的一項(xiàng)責(zé)任,一般認(rèn)為成年人腋下溫度(單位:℃)平均在36℃~37℃之間即為正常體溫,超過(guò)37.1℃即為發(fā)熱。發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類(lèi)型:低熱:;高熱:;超高熱(有生命危險(xiǎn)):.

某位患者因發(fā)熱,雖排除肺炎,但也于12日至26日住院治療. 醫(yī)生根據(jù)病情變化,從14日開(kāi)始,以3天為一個(gè)療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱. 住院期間,患者每天上午8:00服藥,護(hù)士每天下午16:00為患者測(cè)量腋下體溫記錄如下:

抗生素使用情況

沒(méi)有使用

使用“抗生素A”治療

使用“抗生素B”治療

日期

12

13

14

15

16

17

18

19

體溫(℃)

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情況

使用“抗生素C”治療

沒(méi)有使用

日期

20

21

22

23

24

25

26

體溫(℃)

38.4

38.0

37.6

37.1

36.8

36.6

36.3

1)請(qǐng)你計(jì)算住院期間該患者體溫不低于39℃的各天體溫平均值;

2)在18日—22日期間,醫(yī)生會(huì)隨機(jī)選取3天在測(cè)量體溫的同時(shí)為該患者進(jìn)行某一特殊項(xiàng)目“項(xiàng)目”的檢查,求至少兩天在高熱體溫下做“項(xiàng)目”檢查的概率;

3)抗生素治療一般在服藥后2-8個(gè)小時(shí)就能出現(xiàn)血液濃度的高峰,開(kāi)始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨(dú)立,請(qǐng)依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列:Aa1a2,…,an,Bb1,b2,…,bn.已知ai,bj∈{01}(i=12,…,n;j=1,2,…,n),定義n×n數(shù)表,其中xij.

(1)若A1,1,1,0B0,10,0,寫(xiě)出XA,B);

(2)若A,B是不同的數(shù)列,求證:n×n數(shù)表XA,B)滿足“xij=xjii=1,2,…,n;j=1,2,…,n;ij)”的充分必要條件為“ak+bk=1k=1,2,…,n)”;

(3)若數(shù)列AB中的1共有n個(gè),求證:n×n數(shù)表XA,B)中1的個(gè)數(shù)不大于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,側(cè)面BB1C1C為菱形,

1)求證:B1CAB;

2)若∠CBB160°,ACBC,且點(diǎn)A在側(cè)面BB1C1C上的投影為點(diǎn)O,求二面角BAA1C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),有下列四個(gè)結(jié)論:

為偶函數(shù);②的值域?yàn)?/span>;

上單調(diào)遞減;④上恰有8個(gè)零點(diǎn),

其中所有正確結(jié)論的序號(hào)為(

A.①③B.②④C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形,的中點(diǎn)為O,且平面

1)證明:;

2)若,,求到平面ABC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案