11.設(shè)復(fù)數(shù)z=1+2i,則$\frac{z^2}{{|{z^2}|}}$=(  )
A.$\frac{3}{5}-\frac{4}{5}i$B.$-\frac{3}{5}+\frac{4}{5}i$C.$1+\frac{4}{5}i$D.1

分析 利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出.

解答 解:z2=(1+2i)2=-3+4i,|z2|=$\sqrt{(-3)^{2}+{4}^{2}}$=5,則$\frac{z^2}{{|{z^2}|}}$=$\frac{-3+4i}{5}$=$-\frac{3}{5}$+$\frac{4}{5}$i.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,D1D=DC=4,AD=2,E為D1C的中點(diǎn).
(1)求三棱錐D1-ADE的體積.
(2)AC邊上是否存在一點(diǎn)M,使得D1A∥平面MDE?若存在,求出AM的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高情況的統(tǒng)計(jì)圖如下:
(1)估計(jì)該校男生的人數(shù);
(2)從樣本中身高在180~190cm之間的男生中任選2人,求至少有1人身高在185~190cm之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)利用“五點(diǎn)法”畫出函數(shù)$y=2sin(\frac{1}{2}x+\frac{π}{6})$在長(zhǎng)度為一個(gè)周期的閉區(qū)間的簡(jiǎn)圖.
    x-$\frac{π}{3}$  $\frac{2π}{3}$    $\frac{5π}{3}$$\frac{8π}{3}$  $\frac{11π}{3}$    
  $\frac{1}{2}x+\frac{π}{6}$0              $\frac{π}{2}$                  π            $\frac{3π}{2}$               2π               
    y020-20
(2)說(shuō)明該函數(shù)圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣平移和伸縮變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=9x-a•3x+1+a2(x∈[0,1],a∈R),記f(x)的最大值為g(a).
(Ⅰ)求g(a)解析式;
(Ⅱ)若對(duì)于任意t∈[-2,2],任意a∈R,不等式g(a)≥-m2+tm恒成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知平面區(qū)域D=$\left\{{({x,y})\left|\begin{array}{l}\\ 3x+y≥3\\ x-y≤2\\ x+3y≤3\end{array}\right.}\right\}$,z=3x-2y,若命題“?(x0,y0)∈D,z>m”為假命題,則實(shí)數(shù)m的最小值為( 。
A.$\frac{3}{4}$B.$\frac{7}{4}$C.$\frac{21}{4}$D.$\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{x}{e^x}$-axlnx(a∈R)在x=1處的切線方程為y=bx+1+$\frac{1}{e}$(b∈R).
(1)求a,b的值;
(2)證明:f(x)<$\frac{2}{e}$.
(3)若正實(shí)數(shù)m,n滿足mn=1,證明:$\frac{1}{{e}^{m-1}}$+$\frac{1}{{e}^{n-1}}$<2(m+n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在三棱錐P-ABC中,PC⊥平面ABC,∠ACB=45°,BC=2$\sqrt{2}$,AB=2.
(1)求AC的長(zhǎng);
(2)若PC=$\frac{{2\sqrt{3}}}{3}$,點(diǎn)M在側(cè)棱PB上,且$\overrightarrow{BM}=λ\overrightarrow{MP}$,當(dāng)λ為何值時(shí),二面角B-AC-M的大小為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知集合A={1,2,6},B={2,3,6},則A∪B={1,2,3,6}.

查看答案和解析>>

同步練習(xí)冊(cè)答案