20.A、B為集合,命題Ⅰ:A∩B=∅,命題Ⅱ:A、B中至少有一個空集,則I是Ⅱ的( 。
A.充分非必要條件B.必要非允分條件
C.非充分非必要條件D.充要條件

分析 根據(jù)充分必要條件的定義結(jié)合集合的定義判斷即可.

解答 解:若A∩B=∅,則集合A與B中至少有一個是∅,不正確,
例如:A={1},B={2}它們的交集是∅,不是充分條件,
反之,若集合A與B中至少有一個是∅,則A∩B=∅,成立,
是必要條件,
故選:B.

點評 本題考查了充分必要條件,考查集合的運算,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.在公差為2的等差數(shù)列{an}中,若a2=1,則a5的值是7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知復數(shù)z=1-i(i是虛數(shù)單位),則$\frac{2}{z}$-z2的共軛復數(shù)是( 。
A.1-3iB.1+3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,A,B,C的對邊分別是a,b,c,且a2sinB+(a2+b2-c2)sinA=0,tanA=$\frac{\sqrt{2}sinB+1}{\sqrt{2}cosB+1}$,則A等于(  )
A.$\frac{5π}{24}$B.$\frac{7π}{24}$C.$\frac{5π}{36}$D.$\frac{7π}{36}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知(1+m$\sqrt{x}$)n(m∈R+)展開式的二項式系數(shù)之和為256,展開式中含x項的系數(shù)為112.
(1)求m、n的值;
(2)求(1+m$\sqrt{x}$)n(1-x)展開式中含x2項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,其中PA=PD=AD=2,∠BAD=60°,Q為AD中點.
(1)求證:AD⊥PB;
(2)若平面PAD⊥平面ABCD,且M為PC的中點,求四棱錐M-ABCD的體積.
(3)在(2)的條件下,求二面角P-AB-D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.定義在(1,+∞)上的函數(shù)f(x)同時滿足:
①對任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;
②當x∈(1,3]時,f(x)=3-x.
記函數(shù)g(x)=f(x)-k(x-1),若函數(shù)g(x)恰好有兩個零點,則實數(shù)k的取值范圍是( 。
A.(2,3)B.[2,3)C.$({\frac{9}{4},3})$D.$[{\frac{9}{4},3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若數(shù)列An:a1、a2、…an(n≥2)滿足|ak+1-ak|=d>0(k=1,2,…,n-1),則稱An為F數(shù)列:
(1)寫出所有滿足a1=a5=0的兩個F數(shù)列A5;
(2)若a1=d=1,n=2016,證明:F數(shù)列是遞增數(shù)列的充要條件是an=2016;
(3)記S(An)=a1+a2+…+an,對任意給定的正整數(shù)n(n≥2),且d∈N*,是否存在a1=0的F數(shù)列An,使得S(An)=0?如果存在,求出正整數(shù)n滿足的條件,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知角α的終邊與x軸正半軸的夾角為30°,則α=2kπ±$\frac{π}{6}$,(k∈Z)(用弧度制表示).

查看答案和解析>>

同步練習冊答案