若變量x,y滿足約束條件
x+2y≤8
0≤x≤4
0≤y≤3
,則目標(biāo)函數(shù)z=2x+3y的最大值為
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:確定不等式表示的平面區(qū)域,明確目標(biāo)函數(shù)的幾何意義,即可求得最大值.
解答: 解:不等式組
x+2y≤8
0≤x≤4
0≤y≤3
表示的平面區(qū)域如圖所示
目標(biāo)函數(shù)z=2x+3y,即y=-
2
3
x+
z
3
,則直線過點(diǎn)A時,縱截距最大,
此時,由
x+2y=8
x=4
,可得x=4,y=2
∴目標(biāo)函數(shù)z=2x+3y的最大值為2×4+3×2=14.
故答案為:14
點(diǎn)評:本題考查線性規(guī)劃知識,考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R),設(shè)直線l1,l2分別是曲線y=f(x)的兩條不同的切線.
(1)若函數(shù)f(x)為奇函數(shù),且當(dāng)x=1時f(x)有極小值為-4.
(i)求a,b,c,d的值;
(ii)若直線l3亦與曲線y=f(x)相切,且三條不同的直線l1,l2,l3交于點(diǎn)G(m,4),求實(shí)數(shù)m的取值范圍;
(2)若直線l1∥l2,直線l1與曲線y=f(x)切于點(diǎn)B且交曲線y=f(x)于點(diǎn)D,直線l2和與曲線y=f(x)切于點(diǎn)C且交曲線y=f(x)于點(diǎn)A,記點(diǎn)A,B,C,D的橫坐標(biāo)分別為xA,xB,xC,xD,求(xA-xB):(xB-xC):(xC-xD)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正方體ABCD-A1B1C1D1的棱長為1,則三棱錐A-BDA1的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均為正整數(shù)的無窮等差數(shù)列{an},滿足a54=2014,且存在正整數(shù)k,使a1,a54,ak成等比數(shù)列,則公差d的所有可能取值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個平面向量
AB
,
AC
,
BC
滿足|
AB
|=1,|
AC
|=2,|
BC
|=
3
,點(diǎn)E是BC的中點(diǎn),若點(diǎn)D滿足
BD
=2
AE
,則
AC
AD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

球O為邊長為2的正方體ABCD-A1B1C1D1的內(nèi)切球,P為球O的球面上動點(diǎn),M為B1C1中點(diǎn),DP⊥BM,則點(diǎn)P的軌跡周長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子投擲兩次分別得到點(diǎn)數(shù)a,b,則直線ax-by=0與圓(x-2)2+y2=2沒有公共點(diǎn)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)一組數(shù)據(jù)31,37,33,a,35的平均數(shù)是34,則這組數(shù)據(jù)的方差是(  )
A、2.5B、3C、3.5D、4

查看答案和解析>>

同步練習(xí)冊答案