A. | $\frac{4}{9}$ | B. | $\frac{16}{9}$ | C. | $\frac{4}{3}$ | D. | $\frac{5}{3}$ |
分析 由已知可得m$\overrightarrow{a}$+2$\overrightarrow$=(m+6)$\overrightarrow{i}$+(m+4)$\overrightarrow{j}$+(-2m+2)$\overrightarrow{k}$,2$\overrightarrow{a}$-$\overrightarrow$=-$\overrightarrow{i}$-5$\overrightarrow{k}$,由m$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$互相垂直,可得:(m$\overrightarrow{a}$+2$\overrightarrow$)•(2$\overrightarrow{a}$-$\overrightarrow$)=0,即-(m+6)-5(-2m+2)=0,解得答案.
解答 解:∵{$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$}為空間的單位正交基底,且$\overrightarrow{a}$=$\overrightarrow{i}$+$\overrightarrow{j}$-2$\overrightarrow{k}$,$\overrightarrow$=3$\overrightarrow{i}$+2$\overrightarrow{j}$+$\overrightarrow{k}$,
∴m$\overrightarrow{a}$+2$\overrightarrow$=(m+6)$\overrightarrow{i}$+(m+4)$\overrightarrow{j}$+(-2m+2)$\overrightarrow{k}$,
2$\overrightarrow{a}$-$\overrightarrow$=-$\overrightarrow{i}$-5$\overrightarrow{k}$,
又∵m$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$互相垂直,
∴(m$\overrightarrow{a}$+2$\overrightarrow$)•(2$\overrightarrow{a}$-$\overrightarrow$)=0,
∴-(m+6)-5(-2m+2)=0,
解得:m=$\frac{16}{9}$,
故選:B
點評 本題考查的知識點是向量垂直的充要條件,難度不大,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,3) | B. | (1,3) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 65 | B. | 56 | C. | P65 | D. | C65 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com