3.已知函數(shù)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,則不等式f(log${\;}_{\frac{1}{2}}$(x-1))+f(2-x)>0的解集為(  )
A.(2,3)B.(1,3)C.(0,2)D.(1,2)

分析 先確定f(x)的奇偶性,單調(diào)性,將原不等式轉(zhuǎn)化為解不等式:log2(x-1)+(x-2)<0,再構(gòu)造函數(shù)得出解集.

解答 解:先判斷f(x)的奇偶性,f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{{1-2}^{x}}{1+{2}^{x}}$=-f(x),即f(x)為R上的奇函數(shù),
再判斷f(x)的單調(diào)性,f(x)=$\frac{2^x-1}{2^x+1}$=1-$\frac{2}{2^x+1}$,即f(x)為R上的單調(diào)遞增函數(shù),
因此,不等式f($lo{g}_{\frac{1}{2}}$(x-1))+f(2-x)>0可化為:
f[$lo{g}_{\frac{1}{2}}$(x-1)]>f(x-2),所以,$lo{g}_{\frac{1}{2}}$(x-1)>x-2,
即log2(x-1)+(x-2)<0,--------------------①
構(gòu)造函數(shù),F(xiàn)(x)=log2(x-1)+(x-2),
該函數(shù)在定義域(1,+∞)上單調(diào)遞增,且F(2)=0,
因此,當(dāng)1<x<2時(shí),F(xiàn)(x)<0,
所以,不等式①的解集為(1,2),
故答案為:D.

點(diǎn)評(píng) 本題主要考查了函數(shù)奇偶性和單調(diào)性的綜合應(yīng)用,涉及奇偶性和單調(diào)性的判斷和證明,并通過(guò)構(gòu)造函數(shù)運(yùn)用單調(diào)性解不等式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-4x+3,則f(x)的單調(diào)增區(qū)間是[-2,0],[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知p:不等式ax2+2ax+1>0的解集為R;q:0<a<1.則p是q必要(充分,必要,充要)條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}滿(mǎn)足a1=1,an=a2n-1-1(n>1),則a5=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.某幾何體的三視圖如圖所示,則該幾何體的表面積為$\frac{7}{2}$$\sqrt{3}$+$\frac{\sqrt{6}}{2}$+$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知P是直線(xiàn)y=x+1上一點(diǎn),M,N分別是圓C1:(x-3)2+(y+3)2=1與圓C2:(x+4)2+(y-4)2=1上的點(diǎn)則|PM|-|PN|的最大值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知正四棱錐V-ABCD底面中心為O,E,F(xiàn)分別為VA,VC的中點(diǎn),底面邊長(zhǎng)為2,高為4,建立適當(dāng)?shù)目臻g直角坐標(biāo)系,求異面直線(xiàn)BE與DF所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知{$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$}為空間的單位正交基底,且$\overrightarrow{a}$=$\overrightarrow{i}$+$\overrightarrow{j}$-2$\overrightarrow{k}$,$\overrightarrow$=3$\overrightarrow{i}$+2$\overrightarrow{j}$+$\overrightarrow{k}$,若m$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$互相垂直,則實(shí)數(shù)m的值為( 。
A.$\frac{4}{9}$B.$\frac{16}{9}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知點(diǎn)A(1,2),B(3,1),則線(xiàn)段AB的垂直平分線(xiàn)的斜率是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案