等比數(shù)列{an}中,已知a2=2,a5=16
(1)求數(shù)列{an}的通項an
(2)若等差數(shù)列{bn},b1=a5,b8=a2,求數(shù)列{bn}前n項和Sn,并求Sn最大值.
【答案】分析:(1)由 a2=2,a5=16,得q=2,解得 a1=1,從而得到通項公式.
(2)根據(jù) b8-b1=7d 求出d=-2,再求出數(shù)列{bn}前n項和Sn =17n-n2.利用二次函數(shù)的性質(zhì)可得當(dāng)n=8 或9時,Sn有最大值.
解答:解:(1)由 a2=2,a5=16,得q=2,解得 a1=1,從而an=2n-1.…(6分)
(2)由已知得等差數(shù)列{bn},b1=a5 =16,b8=a2=2,設(shè)公差為d,則有b8-b1=7d,
即 2-16=7d,解得d=-2.
故數(shù)列{bn}前n項和Sn =n×16+=17n-n2.  …(10分)
由于二次函數(shù)Sn 的對稱軸為n=,n∈z,且對應(yīng)的圖象開口向下,…(12分)
∴當(dāng)n=8 或9時,Sn有最大值為 72. …(14分)
點評:本題主要考查等等比數(shù)列的通項公式,等差數(shù)列的定義和性質(zhì),等差數(shù)列的通項公式,前n項和公式的應(yīng)用,二次函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a2=18,a4=8,則公比q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:Sn<n-ln(n+1);
(Ⅲ)設(shè)bn=an
9
10
n,證明:對任意的正整數(shù)n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a3=2,a7=32,則a5=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,an=2×3n-1,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前n項和為
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知對n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于( 。

查看答案和解析>>

同步練習(xí)冊答案