【題目】已知函數(shù)f(x)=x2﹣ax+ln(x+1)(a∈R).
(1)當a=2時,求函數(shù)f(x)的極值點;
(2)若函數(shù)f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實數(shù)a的取值范圍;
(3)已知c1>0,且cn+1=f′(cn)(n=1,2,…),在(2)的條件下,證明數(shù)列{cn}是單調(diào)遞增數(shù)列.

【答案】
(1)解:a=2時,fx)=x2﹣2x+ln(x+1),則f′(x)=2x﹣2+ = ,

f′x)=0,x=± ,且x>﹣1,

當x∈(﹣1,﹣ )∪( ,+∞)時f′x)>0,當x∈(﹣ )時,f′x)<0,

所以,函f(x)的極大值點x=﹣ ,極小值點x=


(2)解:因f′(x)=2x﹣a+ ,f′x)>x,

2x﹣a+ >x,

即a<x+ ,

y=x+ =x+1+ ﹣1≥1(當且僅x=0時等號成立),

∴ymin=1.∴a≤1


(3)解:①當n=1時,c2=f′(x)=2c1﹣a+

又∵函y=2x+ 當x>1時單調(diào)遞增,c2﹣c1=c1﹣a+ =c1+1+ ﹣(a+1)>2﹣(a+1)=1﹣a≥0,

∴c2>c1,即n=1時結(jié)論成立.

②假設(shè)n=k時,ck+1>ck,ck>0則n=k+1時,

ck+1=f′(ck)=2ck﹣a+ ,

ck+2﹣ck+1=ck+1﹣a+ =ck+1+1+ ﹣(a+1)>2﹣(a+1)=1﹣a≥0,

ck+2>ck+1,即n=k+1時結(jié)論成立.由①,②知數(shù){cn}是單調(diào)遞增數(shù)列


【解析】(1)先求出導函數(shù),找到導數(shù)為0的根,在檢驗導數(shù)為0的根兩側(cè)導數(shù)的符號即可得出結(jié)論.(2)因f′(x)=2x﹣a+ ,由f′x)>x,分參數(shù)得到:a<x+ ,再利用函數(shù)y=x+ 的最小值即可得出求實數(shù)a的取值范圍.(3)本題考查的知識點是數(shù)學歸納法,要證明當n=1時,c2>c1成立,再假設(shè)n=k時ck+1>ck , ck>0成立,進而證明出n=k+1時ck+2>ck+1 , 也成立,即可得到對于任意正整數(shù)n數(shù)列{cn}是單調(diào)遞增數(shù)列.
【考點精析】本題主要考查了函數(shù)的極值與導數(shù)的相關(guān)知識點,需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格紙上的小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體外接球的表面積為 (

A.9π
B.18π
C.36π
D.144π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知P是函數(shù)f(x)=ex(x>0)的圖象上的動點,該圖象在點P處的切線l交y軸于點M,過點P作l的垂線交y軸于點N,設(shè)線段MN的中點的縱坐標為t,則t的最大值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,角A,B,C的對邊分別為a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D為△ABC外一點,DB=2,DC=1,求四邊形ABDC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在小正方形邊長為1的網(wǎng)格中畫出了某多面體的三視圖,則該多面體的外接球表面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aln(x+1)﹣x2在區(qū)間(0,1)內(nèi)任取兩個實數(shù)p,q,且p≠q,不等式 >1恒成立,則實數(shù)a的取值范圍為(
A.[15,+∞)
B.(﹣∞,15]
C.(12,30]
D.(﹣12,15]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρcos2θ=2sinθ,它在點 處的切線為直線l.
(1)求直線l的直角坐標方程;
(2)已知點P為橢圓 =1上一點,求點P到直線l的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a6=0,S4=14.
(1)求an;
(2)將a2 , a3 , a4 , a5去掉一項后,剩下的三項按原來的順序恰為等比數(shù)列{bn}的前三項,求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年雙十一期間,某電子產(chǎn)品銷售商促銷某種電子產(chǎn)品,該產(chǎn)品的成本為2元/件,通過市場分析,雙十一期間該電子產(chǎn)品銷售量y(單位:千件)與銷售價格x(單位:元)之間滿足關(guān)系式:y= +2x2﹣35x+170(其中2<x<8,a為常數(shù)),且已知當銷售價格為3元/件時,該電子產(chǎn)品銷售量為89千件. (Ⅰ)求實數(shù)a的值及雙十一期間銷售該電子產(chǎn)品獲得的總利潤L(x);
(Ⅱ)銷售價格x為多少時,所獲得的總利潤L(x)最大?并求出總利潤L(x)的最大值.

查看答案和解析>>

同步練習冊答案