8.如果cosα=$\frac{1}{5}$,且α是第四象限的角,那么cos(α+$\frac{π}{3}$)=( 。
A.$\frac{1-6\sqrt{2}}{10}$B.$\frac{\sqrt{3}+2\sqrt{6}}{10}$C.$\frac{1+6\sqrt{2}}{10}$D.$\frac{\sqrt{3}-2\sqrt{6}}{10}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sinα,進而利用兩角和的余弦函數(shù)公式及特殊角的三角函數(shù)值即可得解.

解答 解:∵cosα=$\frac{1}{5}$,且α是第四象限的角,
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{2\sqrt{6}}{5}$,
∴cos(α+$\frac{π}{3}$)=cosαcos$\frac{π}{3}$-sinαsin$\frac{π}{3}$=$\frac{1}{5}×\frac{1}{2}$+$\frac{2\sqrt{6}}{5}$×$\frac{\sqrt{3}}{2}$=$\frac{1+6\sqrt{2}}{10}$.
故選:C.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的余弦函數(shù)公式及特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.調(diào)查某車間20名工人的年齡,第i名工人的年齡為ai,具體數(shù)據(jù)見表:
i1234567891011121314151617181920
ai2928301931283028323130312929313240303230
(1)作出這20名工人年齡的莖葉圖;
(2)求這20名工人年齡的眾數(shù)和極差;
(3)執(zhí)行如圖所示的算法流程圖(其中$\overline{a}$是這20名工人年齡的平均數(shù)),求輸出的S值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x-3y-1≤0\\ x≤k\end{array}\right.$,若z=3x-y的最大值為3,則實數(shù)k的值為( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將函數(shù)y=(x-3)2圖象上的點P(t,(t-3)2)向左平移m(m>0)個單位長度得到點Q.若Q位于函數(shù)y=x2的圖象上,則以下說法正確的是(  )
A.當(dāng)t=2時,m的最小值為3B.當(dāng)t=3時,m一定為3
C.當(dāng)t=4時,m的最大值為3D.?t∈R,m一定為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.集合M的若干個子集的集合稱為集合M的一個子集族.對于集合{1,2,3…n}的一個子集族D滿足如下條件:若A∈D,B⊆A,則B∈D,則稱子集族D是“向下封閉”的.
(Ⅰ)寫出一個含有集合{1,2}的“向下封閉”的子集族D并計算此時$\sum_{A∈D}{{{(-1)}^{|A|}}}$的值(其中|A|表示集合A中元素的個數(shù),約定|ϕ|=0;$\sum_{A∈D}{\;}$表示對子集族D中所有成員A求和);
(Ⅱ)D是集合{1,2,3…n}的任一“向下封閉的”子集族,對?A∈D,記k=max|A|,$f(k)=max\sum_{A∈D}{{{(-1)}^{|A|}}}$(其中max表示最大值),
(ⅰ)求f(2);
(ⅱ)若k是偶數(shù),求f(k).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知A(1,3),B(a,1),C(-b,0),(a>0,b>0),若A,B,C三點共線,則$\frac{3}{a}$+$\frac{1}$的最小值是11+6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.冪函數(shù)y=f(x)的圖象經(jīng)過點(2,8),若f(a)=64則a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“ab<0”是“方程ax2+by2=c表示雙曲線”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.小明每天上學(xué)都需要經(jīng)過一個有交通信號燈的十字路口,已知十字路口的交通信號燈路燈亮燈的時間為40秒,紅燈50秒,如果小明每天到路口的時間是隨機的,則小明上學(xué)時到十字路口需要等待的時間不少于20秒的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案