若函數(shù)f(x)在x處的切線的斜率為k,則極限==   
【答案】分析:根據(jù)函數(shù)在某處的導數(shù)的定義可得,==-=-k.
解答:解:∵函數(shù)f(x)在x處的切線的斜率為k,∴k===-
=-k,
故答案為-k.
點評:本題主要考查函數(shù)在某處的導數(shù)的定義,體現(xiàn)了轉化的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)數(shù)學公式為常數(shù)).
(I)若函數(shù)f(x)在x=1和x=3處取得極值,試求p,q的值;
(Ⅱ)在(I)的條件下,求證:方程f(x)=1有三個不同的實數(shù)根;
(Ⅲ)若函數(shù)f (x)在(一∞,x1)和(x2,+∞)單調(diào)遞增,在(x1,x2)上單調(diào)遞減,又x2-x1>l,且x1>a,試比較a2+pa+q與x1的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)數(shù)學公式
(Ⅰ)若函數(shù)f(x)在x=1處有極值,求a的值;
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點.如果在曲線C上存在點M(x0,y0),使得:①數(shù)學公式;②曲線C在點M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.問函數(shù)f(x)是否存在“中值相依切線”,請說明理由;
(Ⅲ)求證:[(n+1)!]2>(n+1)e2(n-2)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市高三(上)摸底數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)為常數(shù)).
(I)若函數(shù)f(x)在x=1和x=3處取得極值,試求p,q的值;
(Ⅱ)在(I)的條件下,求證:方程f(x)=1有三個不同的實數(shù)根;
(Ⅲ)若函數(shù)f (x)在(一∞,x1)和(x2,+∞)單調(diào)遞增,在(x1,x2)上單調(diào)遞減,又x2-x1>l,且x1>a,試比較a2+pa+q與x1的大。

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年黑龍江省哈爾濱市哈師大附中高二(下)期中數(shù)學試卷(解析版) 題型:選擇題

若函數(shù)f(x)在x處可導,且f/(x)=m,則=( )
A.m
B.-m
C.2m
D.-2m

查看答案和解析>>

同步練習冊答案