(2013•資陽二模)實數(shù)x,y滿足不等式組
x≥0
y≥0
2x+y≤2
,則x+y的最大值為( 。
分析:本題主要考查線性規(guī)劃的基本知識,先畫出約束條件
x≥0
y≥0
2x+y≤2
的可行域,再求出可行域中各角點的坐標,將各點坐標代入目標函數(shù)的解析式,分析后易得目標函數(shù)Z=x+y的最大值.
解答:解:約束條件
x≥0
y≥0
2x+y≤2
的可行域如下圖示:
由圖易得目標函數(shù)z=x+y在A(0,2)處取得最大值2,
故選A.
點評:在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數(shù)⇒④驗證,求出最優(yōu)解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•資陽二模)某部門對當?shù)爻青l(xiāng)居民進行了主題為“你幸福嗎?”的幸福指數(shù)問卷調(diào)査,根據(jù)每份調(diào)查表得到每個調(diào)查對象的幸福指數(shù)評分值(百分制).現(xiàn)從收到的調(diào)查表中隨機抽取20份進行統(tǒng)計,得到右圖所示的頻率分布表:
幸福指數(shù)評分值 頻數(shù) 頻率
[50,60] 1
(60,70] 6
(70,80]
(80,90] 3
(90,100] 2
(Ⅰ)請完成題目中的頻率分布表,并補全題目中的頻率分布直方圖;
(Ⅱ)該部門將邀請被問卷調(diào)查的部分居民參加“幸福愿景”的座談會.在題中抽樣統(tǒng)計的這20人中,已知幸福指數(shù)評分值在區(qū)間(80,100]的5人中有2人被邀請參加座談,求其中幸福指數(shù)評分值在區(qū)間(80,90]的僅有1人被邀請的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•資陽二模)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分別為A1B1、AA1的中點,點F在棱AB上,且AF=
14
AB

(Ⅰ)求證:EF∥平面BDC1;
(Ⅱ)在棱AC上是否存在一個點G,使得平面EFG將三棱柱分割成的兩部分體積之比為1:15,若存在,指出點G的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•資陽二模)雙曲線y2-4x2=64上一點P到它的一個焦點的距離等于1,則P到它的另一個焦點的距離等于為
17
17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•資陽二模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(1,1)與(
6
2
,
3
2
)兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點的直線l與橢圓C交于A、B兩點,橢圓C上一點M滿足|MA|=|MB|.求證:
1
|OA|2
+
1
|OB|2
+
2
|OM|2
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•資陽二模)已知全集U={1,2,3,4,5},A={1,2,3},B={3,5},則(?UA)∪B=( 。

查看答案和解析>>

同步練習冊答案