已知f(x)=ax+b的圖象如圖所示,則f(3)=(  )
精英家教網(wǎng)
A、2
2
-2
B、
3
9
-3
C、3
3
-3
D、3
3
-3
-3
3
-3
分析:由圖象知,f(0)=-2,f(2)=0 解方程組求出a 和 b的值,即得函數(shù)的解析式,進而求得自變量等于3時的函數(shù)值.
解答:解:由圖象知,f(0)=-2,f(2)=0,即b+1=-2,a2+b=0,故b=-3,a=
3
,
∴f(x)=
3
x
-3,
∴f(3)=
3
3
-3=3
3
-3,
故選C.
點評:本題考查用待定系數(shù)法求函數(shù)解析式,體現(xiàn)了數(shù)形結合的數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax+a-x(a>0且a≠1),
(1)證明函數(shù)f ( x )的圖象關于y軸對稱;
(2)判斷f(x)在(0,+∞)上的單調性,并用定義加以證明;
(3)當x∈[1,2]時函數(shù)f (x )的最大值為
103
,求此時a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax+b(a>0且a≠1,b為常數(shù))的圖象經(jīng)過點(1,1)且0<f(0)<1,記m=
1
2
[f-1(x1)+f-1(x2)]
,n=f-1(
x1+x2
2
)
(x1、x2是兩個不相等的正實數(shù)),試比較m、n的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(x)=ax+a-x,若f(1)=3,,求f(2)的值.
(2)設函數(shù)f(x)=log3(ax-bx),且f(1)=1,f(2)=log312.求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax(a>1),g(x)=bx(b>1),當f(x1)=g(x2)=2時,有x1>x2,則a,b的大小關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•新疆模擬)已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然對數(shù)的底,a∈R.
(Ⅰ)a=1時,求f(x)的單調區(qū)間、極值;
(Ⅱ)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值,若不存在,說明理由;
(Ⅲ)在(1)的條件下,求證:f(x)>g(x)+
1
2

查看答案和解析>>

同步練習冊答案