解答:
(Ⅰ)解:當(dāng)a=0時(shí),函數(shù)f(x)=
的定義域?yàn)椋?∞,-1)∪(-1,+∞),
f′(x)=
=
,
令f′(x)=0,得x=0,
當(dāng)x變化時(shí),f(x)和f′(x)的變化情況如下:
x | (-∞,-1) | (-1,0) | 0 | (0,+∞) |
f′(x) | - | - | 0 | + |
f(x) | ↘ | ↘ | 1 | ↗ |
故f(x)的單調(diào)減區(qū)間為(-∞,-1),(-1,0);單調(diào)增區(qū)間為(0,+∞).
所以當(dāng)x=0時(shí),函數(shù)f(x)有極小值f(0)=1.
(Ⅱ)解:結(jié)論:函數(shù)g(x)存在兩個(gè)零點(diǎn).
證明過程如下:
由題意,函數(shù)g(x)=
-1,
∵
x2+x+1=(x+)2+>0,
所以函數(shù)g(x)的定義域?yàn)镽.
求導(dǎo),得g′(x)=
ex(x2+x+1)-ex(2x+1) |
(x2+x+1)2 |
=,
令g′(x)=0,得x
1=0,x
2=1,
當(dāng)x變化時(shí),g(x)和g′(x)的變化情況如下:
x | (-∞,0) | 0 | (0,1) | 1 | (1,+∞) |
g2(x) | + | 0 | - | 0 | + |
g(x) | ↗ | | ↘ | | ↗ |
故函數(shù)g(x)的單調(diào)減區(qū)間為(0,1);單調(diào)增區(qū)間為(-∞,0),(1,+∞).
當(dāng)x=0時(shí),函數(shù)g(x)有極大值g(0)=0;當(dāng)x=1時(shí),函數(shù)g(x)有極小值g(1)=
-1.
∵函數(shù)g(x)在(-∞,0)單調(diào)遞增,且g(0)=0,
∴對于任意x∈(-∞,0),g(x)≠0.
∵函數(shù)g(x)在(0,1)單調(diào)遞減,且g(0)=0,
∴對于任意x∈(0,1),g(x)≠0.
∵函數(shù)g(x)在(1,+∞)上單調(diào)遞增,且g(1)=
-1<0,g(2)=
-1>0,
∴函數(shù)g(x)在(1,+∞)上僅存在一個(gè)x
0,使得函數(shù)g(x
0)=0,
故函數(shù)g(x)存在兩個(gè)零點(diǎn)(即0和x
0).