已知數(shù)列中,,,數(shù)列中,,且點(diǎn)在直線上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)若,求數(shù)列的前項(xiàng)和.
(Ⅰ) ;(Ⅱ);(Ⅲ).
【解析】
試題分析:(Ⅰ) 由已知可構(gòu)造數(shù)列,并證明其為等比數(shù)列,先求出數(shù)列的通項(xiàng)公式,再求數(shù)列的通項(xiàng)公式(一般形如的遞推關(guān)系,可先構(gòu)造等比數(shù)列,其公比與常數(shù),可由與所給等式進(jìn)行比較求得);(Ⅱ)將點(diǎn)代入直線方程,可得到數(shù)列中與的關(guān)系式,從而發(fā)現(xiàn)為等差數(shù)列,即可求出數(shù)列的通項(xiàng)公式;(Ⅲ)由(Ⅰ) (Ⅱ)可得數(shù)列的通項(xiàng)公式,觀察中各項(xiàng)關(guān)系,可用錯位相減法來求出(錯位相減法是求數(shù)列前項(xiàng)和的常用方法,它適用于如果一個數(shù)列的各項(xiàng)是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)各項(xiàng)之積構(gòu)成的).
試題解析:(Ⅰ)由得
所以是首項(xiàng)為,公比為2的等比數(shù)列.
所以,故
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014042405173810934312/SYS201404240518532031895556_DA.files/image012.png">在直線上,
所以即又
故數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,
所以
(Ⅲ)== 故
所以
故
相減得
所以
考點(diǎn):1.等比數(shù)列;2.等差數(shù)列;3.數(shù)列前項(xiàng)和求法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011年遼寧省沈陽四校協(xié)作體高二上學(xué)期期中考試數(shù)學(xué) 題型:選擇題
已知數(shù)列中,,則數(shù)列通項(xiàng)公
式為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三三月月考數(shù)學(xué)(理)試卷 題型:解答題
已知數(shù)列中,[來源:]
(1)求證:數(shù)列為等比數(shù)列;
(2)設(shè)數(shù)列的前項(xiàng)的和為,若,求:正整數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com