點P是橢圓
x2
9
+
y2
4
=1上的一點,F(xiàn)1,F(xiàn)2是焦點,且∠F1PF2=60°,則△F1PF2的面積是( 。
A、
4
3
3
B、4
3
C、
4
3
D、
3
2
分析:根據(jù)橢圓的方程算出|F1F2|=2
5
,由橢圓的定義可得|PF1|+|PF2|=2a=6.然后在△F1PF2中,利用余弦定理算出|PF1|•|PF2|=
16
3
,再利用三角形的面積公式加以計算,可得△F1PF2的面積.
解答:解:橢圓
x2
9
+
y2
4
=1中,a=3,b=2,
∴c=
a2-b2
=
5
,可得焦點為F1(-
5
,0),F(xiàn)2
5
,0).
由橢圓的定義,可得|PF1|+|PF2|=2a=6,
∵△F1PF2中,∠F1PF2=60°,
∴根據(jù)余弦定理,得|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos60°,
即(2
5
2=(|PF1|+|PF2|)2-3|PF1|•|PF2|,可得20=36-3|PF1|•|PF2|,
由此解得|PF1|•|PF2|=
16
3
,
∴△F1PF2的面積S=
1
2
|PF1|•|PF2|sin60°=
4
3
3

故選:A
點評:本題給出橢圓上一點P滿足的條件,求點P與兩個焦點構成三角形的面積.著重考查了橢圓的定義與簡單性質、利用正余弦定理解三角形等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P(x,y)是橢圓
x2
9
+
y2
4
=1
上的動點.
(1)求2x+3y的取值范圍;
(2)求橢圓上的點到直線2x+3y+7
2
=0
的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個命題:
①如果復數(shù)z滿足|z+i|+|z-i|=2,則復數(shù)z在復平面的對應點的軌跡是橢圓.
②若對任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點E(-5,0)、F(5,0),若P(x,y)是C上的動點,則||PE|-|PF||<6.
上述命題中錯誤的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•溫州二模)已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)與橢圓
x2
9
+
y2
5
=1
的共同焦點,若點P是兩曲線的一個交點,且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①如果復數(shù)z滿足|z+i|+|z-i|=2,則復數(shù)z在復平面上所對應點的軌跡是橢圓.
②設f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點E(-5,0)、F(5,0),若P(x,y)是C上的動點,則||PE|-|PF||<6.
④設定義在R上的兩個函數(shù)f(x)、g(x)都有最小值,且對任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯誤的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P(x,y)是橢圓
x2
9
+
y2
4
=1
上的動點.
(1)求2x+3y的取值范圍;
(2)求橢圓上的點到直線2x+3y+7
2
=0
的最短距離.

查看答案和解析>>

同步練習冊答案