11.意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…,該數(shù)列的特點(diǎn)是:前兩個(gè)數(shù)均為 1,從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.人們把這樣的一列數(shù)組成的數(shù)列{an}稱為斐波那契數(shù)列.則(a1a3+a2a4+a3a5+a4a6+a5a7+a6a8)-(a22+a32+a42+a52+a62+a72)=( 。
A.0B.-1C.1D.2

分析 利用斐波那契數(shù)列的通項(xiàng)公式及其性質(zhì)即可得出.

解答 解:a1a3-a22=1×2-1=1,
a2a4-a32=1×3-22=-1,
a3a5-a42=2×5-32=1,

∴(a1a3+a2a4+a3a5+a4a6+a5a7+a6a8)-(a22+a32+a42+a52+a62+a72)=0.
故選:A.

點(diǎn)評(píng) 本題考查了斐波那契數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.不等式$\frac{x+1}{x}$≤3的解集是(-∞,0)∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.《九章算術(shù)》中,將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐P-ABC為鱉臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱錐P-ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為( 。
A.B.12πC.20πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)$f(x)=2sin(\frac{π}{4}-2x)$,則函數(shù)f(x)的單調(diào)遞減區(qū)間為( 。
A.$[{\frac{3π}{8}+2kπ,\frac{7π}{8}+2kπ}](k∈Z)$B.$[{-\frac{π}{8}+2kπ,\frac{3π}{8}+2kπ}](k∈Z)$
C.$[{\frac{3π}{8}+kπ,\frac{7π}{8}+kπ}](k∈Z)$D.$[{-\frac{π}{8}+kπ,\frac{3π}{8}+kπ}](k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)全集U=R,集合A={x|x≤-2或x≥3},B={x|x>1},則(∁UA)∪B=(  )
A.{x|x≥-2}B.{x|x>-2}C.{x|1<x<3}D.{x|1<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某農(nóng)科所發(fā)現(xiàn),一種作物的年收獲量 y(單位:kg)與它“相近”作物的株數(shù) x具有線性相關(guān)關(guān)系(所謂兩株作物“相近”是指它們的直線距離不超過(guò) 1m),并分別記錄了相近作物的株數(shù)為 1,2,3,5,6,7時(shí),該作物的年收獲量的相關(guān)數(shù)據(jù)如表:
x123567
y605553464541
(1)求該作物的年收獲量 y關(guān)于它“相近”作物的株數(shù)x的線性回歸方程;
(2)農(nóng)科所在如圖所示的直角梯形地塊的每個(gè)格點(diǎn)(指縱、橫直線的交叉點(diǎn))處都種了一株該作物,圖中
每個(gè)小正方形的邊長(zhǎng)均為 1,若從直角梯形地塊的邊界和內(nèi)部各隨機(jī)選取一株該作物,求這兩株作物“相
近”且年產(chǎn)量?jī)H相差3kg的概率.
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線y=bx+a的斜率和截距的最小二乘估
計(jì)分別為,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.復(fù)數(shù)$\frac{1-2i}{2+i}$=(  )
A.-iB.iC.$\frac{4}{5}-i$D.$\frac{4}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知x,y滿足$\left\{\begin{array}{l}x+y-2≥0\\ x-y+{m^2}≥0\\ x≤2\end{array}\right.$若目標(biāo)函數(shù)z=-2x+y的最大值不超過(guò)2,則實(shí)數(shù)m的取值范圍是(  )
A.(-2,2)B.[0,2]C.[-2,0]D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知全集U={-1,0,2},集合A={-1,0},則∁UA={2}.

查看答案和解析>>

同步練習(xí)冊(cè)答案