已知圓M:(x+cosθ)2+(y-sinθ)2=1,直線l:y=kx,下面四個(gè)命題:
①對任意實(shí)數(shù)k與θ,直線l和圓M相切;
②對任意實(shí)數(shù)k與θ,直線l和圓M有公共點(diǎn);
③對任意實(shí)數(shù)θ,一定存在實(shí)數(shù)k,使得直線l與和圓M相切;
④對任意實(shí)數(shù)k,一定存在實(shí)數(shù)θ,使得直線l與和圓M相切.
其中真命題的代號是
 
(寫出所有真命題的代號).
考點(diǎn):直線與圓的位置關(guān)系,圓的標(biāo)準(zhǔn)方程
專題:計(jì)算題,直線與圓
分析:根據(jù)圓的方程找出圓心坐標(biāo)和圓的半徑r,然后求出圓心到已知直線的距離d,利用兩角和的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),與半徑r比較大小,即可得到直線與圓的位置關(guān)系,得到正確答案即可.
解答: 解:圓心坐標(biāo)為(-cosθ,sinθ),圓的半徑為1
圓心到直線的距離d=
|-kcosθ-sinθ|
1+k2
=|sin(θ+φ)|≤1(其中sinφ=-
k
1+k2
,cosφ=-
1
1+k2

所以直線l與圓M有公共點(diǎn),且對于任意實(shí)數(shù)k,必存在實(shí)數(shù)θ,使直線l與圓M相切,
故答案為:②④
點(diǎn)評:本題要求學(xué)生會(huì)利用圓心到直線的距離與半徑比較大小來判斷直線與圓的位置關(guān)系,靈活運(yùn)用點(diǎn)到直線的距離公式及兩角和的正弦函數(shù)公式化簡求值,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-3≤0},B={x|m-2≤x≤m+2}.
(1)若A∪B=A,求實(shí)數(shù)m的取值;
(2)若A⊆∁RB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)B的坐標(biāo)為(0,1),離心率為
2
2
.直線l與橢圓C交于M,N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C的右焦點(diǎn)F恰好為△BMN的垂心,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

波波斯基以游戲方式?jīng)Q定是否參加學(xué)校同人社還是學(xué)校芭蕾舞團(tuán),游戲規(guī)則為:以O(shè)為起點(diǎn)(如圖正方體ABCD-EFGH的中心為點(diǎn)O),再從A,B,C,D,E,F(xiàn),G,H這8個(gè)頂點(diǎn)中任取兩點(diǎn)為終點(diǎn)分別得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為X,若X>0就參加芭蕾舞團(tuán),否則就參加同人社.
(Ⅰ)求波波參加學(xué)校芭蕾舞社的概率;
(Ⅱ)若分別在左面四個(gè)頂點(diǎn)A,D,H,E處放置藍(lán)球,右面四個(gè)頂點(diǎn)B,C,G,F(xiàn)處放置紅球,波波斯基在上底面隨機(jī)抽取2個(gè)球,在下底面隨機(jī)抽取3個(gè)球,記抽得的紅球個(gè)數(shù)為ξ,寫出隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-1)2+y2=1被直線x-y=0分成兩段圓弧,則較短弧長與較長弧長之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x-1=0關(guān)于直線2x-y+3=0對稱的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2+2cos8
+2
1-sin8
的化簡結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科做)已知一個(gè)圓錐的母線長為3,則它的體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線2x2+y=0的焦點(diǎn)坐標(biāo)是(  )
A、(0,-
1
8
)
B、(0,-
1
2
)
C、(-
1
8
,0)
D、(-
1
2
,0)

查看答案和解析>>

同步練習(xí)冊答案