若橢圓
x2
16
+
y2
25
=1
上的一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為3,則P到另一焦點(diǎn)距離為(  )
A、2B、7C、5D、3
分析:根據(jù)橢圓的方程,算出橢圓的長軸2a=10,再由P到橢圓一個(gè)焦點(diǎn)的距離為3,利用橢圓的定義即可算出點(diǎn)P到另一焦點(diǎn)的距離.
解答:解:∵橢圓的方程為
x2
16
+
y2
25
=1

∴橢圓的焦點(diǎn)在y軸上,a2=25且b2=16,可得a=5且b=4.
∵點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為3,
∴設(shè)P到另一個(gè)焦點(diǎn)的距離為d,則根據(jù)橢圓的定義可得3+d=2a=10,解之得d=7.
即P到另一焦點(diǎn)的距離為7.
故選:B
點(diǎn)評:本題給出焦點(diǎn)在y軸上的橢圓,在已知點(diǎn)P到橢圓一個(gè)焦點(diǎn)距離的情況下求它到另一個(gè)焦點(diǎn)的距離.著重考查了橢圓的定義與標(biāo)準(zhǔn)方程等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在O為坐標(biāo)原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A(4,-3)為△OAB的直角頂點(diǎn).已知|
AB
|=2|
OA
|
且點(diǎn)B的縱坐標(biāo)大于零.
(1)求圓x2-6x+y2+2y=0關(guān)于直線OB對稱的圓的方程;
(2)設(shè)直線l平行于直線AB且過點(diǎn)(0,a),問是否存在實(shí)數(shù)a,使得橢圓
x2
16
+y2=1
上有兩個(gè)不同的點(diǎn)關(guān)于直線l對稱,若不存在,請說明理由;若存在,請求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)給出下列命題:
①若p,q是兩個(gè)命題,則“p∧q為真”是“p∨q為真”的必要不充分條件;
②若橢圓
x2
16
+
y2
25
=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,且弦AB過點(diǎn)F1,則△ABF2的周長為16,
③過點(diǎn)(0,2)與拋物線y2=-5x僅有一個(gè)公共點(diǎn)的直線有3條;
④導(dǎo)數(shù)為0的點(diǎn)一定是函數(shù)的極值點(diǎn).
其中不是真命題的序號是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=-
1
4
x+b
交橢圓
x2
16
+y2=1
于A,B兩點(diǎn),若AB中點(diǎn)橫坐標(biāo)為1,則b=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在以O(shè)為坐標(biāo)原點(diǎn)的直角坐標(biāo)系中,
OA
AB
,點(diǎn)A(4,-3),B點(diǎn)在第一象限且到x軸的距離為5.
(1) 求向量
AB
的坐標(biāo)及OB所在的直線方程;
(2) 求圓(x-3)2+(y+1)2=10關(guān)于直線OB對稱的圓的方程;
(3) 設(shè)直線l
AB
為方向向量且過(0,a)點(diǎn),問是否存在實(shí)數(shù)a,使得橢圓
x2
16
+y2=1上有兩個(gè)不同的點(diǎn)關(guān)于直線l對稱.若不存在,請說明理由; 存在請求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)給出下列命題:
①若p,q是兩個(gè)簡單命題,則“p且q為真”是“p或q為真”的必要不充分條件;
②若橢圓
x2
16
+
y2
25
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,且弦AB過點(diǎn)F1,則△ABF2的周長為16;
③過點(diǎn)(0,2)與拋物線y2=-5x僅有一個(gè)公共點(diǎn)的直線有3條;
④導(dǎo)數(shù)為0的點(diǎn)一定是函數(shù)的極值點(diǎn).
其中正確的結(jié)論的序號是
 
(要求寫出所有正確結(jié)論的序號).

查看答案和解析>>

同步練習(xí)冊答案