解答:
解:(1)g(x)=f(x)+f(x-
)=cos2x+cos(2x-
)=cos2x+sin2x=
sin(2x+
)
∴當(dāng)2kπ-
≤2x+
≤2kπ+
(k∈Z),即kπ-
≤x≤kπ+
(k∈Z)時(shí),函數(shù)g(x)單調(diào)遞增,
∴g(x)單調(diào)遞增區(qū)間為[kπ-
,kπ+
](k∈Z).
(2)h(x)=f(x)-asinx=cos2x-asinx=1-2sin
2x-asinx,
令sinx=t,則-1≤t≤1,
h(t)=-2t
2-at+1,函數(shù)為開口向下,對(duì)稱軸為t=-
的拋物線,
當(dāng)-
≤-1時(shí),即a≥4時(shí),函數(shù)在[-1,1]上單調(diào)減,h(t)min=h(1)=-2-a+1=-1,求得a=0,與a≥4矛盾舍去.
當(dāng)-
≥1時(shí),即a≤-4,函數(shù)在[-1,1]上單調(diào)增,h(t)min=h(-1)=-2+a+1=-1,求得a=0,與a≤-4矛盾舍去
當(dāng)0≥-
≥-1時(shí),即0≤a≤4,h(t)min=h(1)=-2-a+1=-1,求得a=0
當(dāng)1≥-
≥0時(shí),即-4≤a≤0時(shí),h(t)min=h(-1)=-2+a+1=-1,求得a=0,
綜合可知a=0.
(3)f(θ)-2mf(
)+4m-3=cos2θ-2mcosθ+4m-3=2cos
2θ-2mcosθ+4m-2=0,
令cosθ=t,則-1≤t≤1則2t
2-2mt+4m-2=0,在[-1,1]有實(shí)數(shù)解,
即函數(shù)f(t)=2t
2-2mt+4m-2的圖象與x軸有交點(diǎn),
①當(dāng)有一個(gè)交點(diǎn)時(shí),需
或
| f(1)=2-2m+4m-2<0 | f(-1)=2+2m+4m-2>0 |
| |
或
| f(1)=2-2m+4m-2>0 | f(-1)=2+2m+4m-2<0 |
| |
解得m的范圍為∅,
②當(dāng)有兩個(gè)交點(diǎn)時(shí),需
| △=4m2-8(4m-2)>0 | f(1)>0 | f(-1)>0 | -1<<1 |
| |
,解得0<m<4-2