(本題滿分12分)某企業(yè)為了適應(yīng)市場(chǎng)需求,計(jì)劃從2010年元月起,在每月固定投資5萬(wàn)元的基礎(chǔ)上,元月份追加投資6萬(wàn)元,以后每月的追加投資額均為之前幾個(gè)月投資額總和的20%,但每月追加部分最高限額為10萬(wàn)元. 記第n個(gè)月的投資額為
(1)求n的關(guān)系式;
(2)預(yù)計(jì)2010年全年共需投資多少萬(wàn)元?(精確到0.01,參考數(shù)據(jù):
(1)  (2)預(yù)計(jì)2010年全年共需投資154.64萬(wàn)元
(1)設(shè)前n個(gè)月投資總額為,
時(shí),,∴
兩式相減得:,∴ 
,∴
,∴,∴,∴

(2)

故預(yù)計(jì)2010年全年共需投資154.64萬(wàn)元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知不等式為大于2的整數(shù),表示不超過(guò)的最大整數(shù). 設(shè)數(shù)列的各項(xiàng)為正,且滿足
(Ⅰ)證明
(Ⅱ)猜測(cè)數(shù)列是否有極限?如果有,寫出極限的值(不必證明);
(Ⅲ)試確定一個(gè)正整數(shù)N,使得當(dāng)時(shí),對(duì)任意b>0,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分16分)
點(diǎn),點(diǎn)A1(x1,0),A2(x,0),…,An(xn,0),…順次為x軸上的點(diǎn),其中x1=a(0<a≤1).對(duì)于任意n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.(1)求數(shù)列{yn}的通項(xiàng)公式,并證明它為等差數(shù)列;(2)求證:x- x是常數(shù),并求數(shù)列{ x}的通項(xiàng)公式;(3)上述等腰ΔAnBnAn+1中是否可能存在直角三角形,若可能,求出此時(shí)a的值;若不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)等差數(shù)列的前項(xiàng)和為
⑴求數(shù)列的通項(xiàng)與前項(xiàng)和;⑵設(shè),求證:數(shù)列中任意不同的三項(xiàng)都不可能成為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
已知數(shù)列中,且點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若函數(shù)求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項(xiàng)和,
試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是一個(gè)公差為的等差數(shù)列,它的前項(xiàng)和成等比數(shù)列,(1)證明;(2)求公差的值和數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}中,a4=1,a8=8,則a12的值為( 。
A.30B.64C.31D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列的通項(xiàng)公式,設(shè)的前n項(xiàng)和為,則使 成立的自然數(shù)n( )
A.有最大值63B.有最小值63C.有最大值31D.有最小值31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的前n項(xiàng)和為,且 =6,=4, 則公差d等于(     )
A.1B.C.- 2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案