已知,若存在不同的實(shí)數(shù)使得,則的取值范圍是       

 

【答案】

【解析】解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082415245639811616/SYS201208241525198536341878_DA.files/image002.png">,若存在不同的實(shí)數(shù)使得,結(jié)合圖像法可知,則的取值范圍是

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+px2+qx的圖象與x軸切于非原點(diǎn)的一點(diǎn),且f(x)的一個(gè)極值為-4
(1)求p、q的值,并求出f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=t有3個(gè)不同的實(shí)根,求t的取值范圍;
(3)令g(x)=f′(ex)+x-(t+12)ex,是否存在實(shí)數(shù)M,使得t≤M時(shí)g(x)是單調(diào)遞增函數(shù).若存在,求出M的最大值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2lnx,g(x)=
1
2
ax2+3x.
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點(diǎn)P、Q,且曲線y=f(x)和y=g(x)在點(diǎn)P、Q處的切線平行,若方程
1
2
f(x2+1)+g(x)=3x+k有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問(wèn)是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(xiàn)(x)取得最大值,若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
e2x-e(ex+e-x)-x

(1)求函數(shù)f(x)的極值.(2)是否存在正整數(shù)a,使得方程f(x)=
f(-a)+f(a)
2
在區(qū)間[-a,a]上有三個(gè)不同的實(shí)根,若存在,試確定a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年吉林一中理)(12分) 已知函數(shù)

(Ⅰ)若求證,

(Ⅱ)是否存在實(shí)數(shù),使方程有四個(gè)不同的實(shí)根?若存在,求出的取值范圍;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆四川省高二“零診”考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中a,b為實(shí)常數(shù))。

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間:

(Ⅱ)當(dāng)時(shí),函數(shù)有三個(gè)不同的零點(diǎn),證明:

(Ⅲ)若在區(qū)間上是減函數(shù),設(shè)關(guān)于x的方程的兩個(gè)非零實(shí)數(shù)根為,。試問(wèn)是否存在實(shí)數(shù)m,使得對(duì)任意滿足條件的a及t恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案