|x|2-2|x|-15>0的解集是   
【答案】分析:利用二次不等式的求法求出|x|的范圍,然后利用絕對值不等式的解法求出解集即可.
解答:解:∵|x|2-2|x|-15>0,∴|x|<-3或|x|>5,
顯然|x|<-3無解
由|x|>5,可得x∈(-∞,-5)∪(5,+∞).
所以不等式的解集為:(-∞,-5)∪(5,+∞)
故答案為:(-∞,-5)∪(5,+∞).
點評:難題考查絕對值不等式的解法,二次不等式的求法,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x|2≤x<4},B={x|3x-7≥8-2x},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義兩種運算a⊕b=ab,a?b=a+b,則函數(shù)f(x)=x?2-2⊕x是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f1(x)=3|x-p1|,f2(x)=2•3|x-p2|(p1,p2為實數(shù)),函數(shù)f(x)定義為:對于每個給定的x,f(x)=
f1(x) ,f1(x)≤f2(x)
f2(x) ,f1(x)>f2(x)

(1)討論函數(shù)f1(x)的奇偶性;
(2)解不等式:f2(x)≥6;
(3)若f(x)=f1(x)對任意實數(shù)x都成立,求p1,p2滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:013

若圓C與圓(x+2)2+(y-1)2=1關(guān)于原點對稱,則圓C的方程是

[  ]

A.(x-2)2+(y+1)2=1

B.(x-2)2+(y-1)2=1

C.(x-1)2+(y+2)2=1

D.(x+1)2+(y-2)2=1

查看答案和解析>>

科目:高中數(shù)學 來源:0110 期中題 題型:填空題

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
③如果在[-1,∞)上是減函數(shù),則實數(shù)a的取值范圍是(-8,-6];
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù);
其中正確說法的序號是(    )(注:把你認為是正確的序號都填上)。

查看答案和解析>>

同步練習冊答案