分析 根據(jù)條件先求得f(x)的解析式f(x)=$\left\{\begin{array}{l}{0,x∈(-1,1)}\\{-x,x∈(-∞,-1)∪(1,+∞)}\end{array}\right.$,再進(jìn)行分類迭代求得f(f(x))的解析式.
解答 解:因?yàn)?\underset{lim}{n→∞}$$\frac{{x}^{n+1}}{1-x^n}$存在,所以x≠±1,
①當(dāng)|x|<1時(shí),$\underset{lim}{n→∞}$$\frac{{x}^{n+1}}{1-x^n}$=$\frac{0}{1-0}$=0;
②當(dāng)|x|>1時(shí),$\underset{lim}{n→∞}$$\frac{{x}^{n+1}}{1-x^n}$=$\underset{lim}{n→∞}$$\frac{x}{\frac{1}{x^n}-1}$=$\frac{x}{0-1}$=-x(極限存在),
即f(x)=$\left\{\begin{array}{l}{0,x∈(-1,1)}\\{-x,x∈(-∞,-1)∪(1,+∞)}\end{array}\right.$,
因此,f(f(x))的解析式需分類討論如下:
當(dāng)x∈(-1,1)時(shí),f(f(x))=f(0)=0,
當(dāng)x∈(-∞,-1)∪(1,+∞)時(shí),f(f(x))=f(-x)=x,
所以,y=f(f(x))=$\left\{\begin{array}{l}{0,x∈(-1,1)}\\{x,x∈(-∞,-1)∪(1,+∞)}\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{0,x∈(-1,1)}\\{x,x∈(-∞,-1)∪(1,+∞)}\end{array}\right.$.
點(diǎn)評 本題主要考查了極限的運(yùn)算,以及分段函數(shù)與復(fù)合函數(shù)解析式的求解,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,4} | B. | {3} | C. | {2,4,6} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,+∞) | B. | ($\frac{1}{2}$,1) | C. | ($\frac{3}{4}$,+∞) | D. | ($\frac{3}{4}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com