9.已知$\underset{lim}{n→∞}$$\frac{{x}^{n+1}}{1-{x}^{n}}$存在,f(x)=$\underset{lim}{n→∞}$$\frac{{x}^{n+1}}{1-{x}^{n}}$,則f(f(x))=$\left\{\begin{array}{l}{0,x∈(-1,1)}\\{x,x∈(-∞,-1)∪(1,+∞)}\end{array}\right.$.

分析 根據(jù)條件先求得f(x)的解析式f(x)=$\left\{\begin{array}{l}{0,x∈(-1,1)}\\{-x,x∈(-∞,-1)∪(1,+∞)}\end{array}\right.$,再進(jìn)行分類迭代求得f(f(x))的解析式.

解答 解:因?yàn)?\underset{lim}{n→∞}$$\frac{{x}^{n+1}}{1-x^n}$存在,所以x≠±1,
①當(dāng)|x|<1時(shí),$\underset{lim}{n→∞}$$\frac{{x}^{n+1}}{1-x^n}$=$\frac{0}{1-0}$=0;
②當(dāng)|x|>1時(shí),$\underset{lim}{n→∞}$$\frac{{x}^{n+1}}{1-x^n}$=$\underset{lim}{n→∞}$$\frac{x}{\frac{1}{x^n}-1}$=$\frac{x}{0-1}$=-x(極限存在),
即f(x)=$\left\{\begin{array}{l}{0,x∈(-1,1)}\\{-x,x∈(-∞,-1)∪(1,+∞)}\end{array}\right.$,
因此,f(f(x))的解析式需分類討論如下:
當(dāng)x∈(-1,1)時(shí),f(f(x))=f(0)=0,
當(dāng)x∈(-∞,-1)∪(1,+∞)時(shí),f(f(x))=f(-x)=x,
所以,y=f(f(x))=$\left\{\begin{array}{l}{0,x∈(-1,1)}\\{x,x∈(-∞,-1)∪(1,+∞)}\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{0,x∈(-1,1)}\\{x,x∈(-∞,-1)∪(1,+∞)}\end{array}\right.$.

點(diǎn)評 本題主要考查了極限的運(yùn)算,以及分段函數(shù)與復(fù)合函數(shù)解析式的求解,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)m∈R,過定點(diǎn)A的動(dòng)直線x+my=0和過定點(diǎn)B的直線mx-y-m+3=0交于點(diǎn)P(x,y),則|PA|+|PB|的最大值是$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,已知角$C=\frac{π}{3}$,a2+b2=4(a+b)-8,則邊c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},則(∁UA)∩B=( 。
A.{2,4}B.{3}C.{2,4,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知四面體P-ABC,其中△ABC是邊長為6的等邊三角形,PA⊥平面ABC,PA=4,則四面體P-ABC外接球的表面積為64π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,$\frac{1}{2}$),$\overrightarrow$=($\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$,1),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,△ABC三個(gè)內(nèi)角A,B,C的對邊分別為a,b,c.
(1)求f(x)的單調(diào)遞增區(qū)間:
(2)若f(B+C)=1,a=$\sqrt{3}$,b=1.求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,向量$\overrightarrow{a}$,$\overrightarrow$的位置如圖所示,已知|$\overrightarrow{a}$|=|$\overrightarrow{OA}$|=4,|$\overrightarrow$|=|$\overrightarrow{AB}$|=3,且∠AOx=45°,∠OAB=105°,請分別求出向量$\overrightarrow{a}$,$\overrightarrow$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)在(-1,1)上既是奇函數(shù),又是減函數(shù),則滿足f(1-x)+f(3x-2)<0的x的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,1)C.($\frac{3}{4}$,+∞)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2x3-1(x∈R).
(1)證明:函數(shù)f(x)在(0.5,1)內(nèi)有一個(gè)零點(diǎn);
(2)求出f(x)在區(qū)間(0.5,1)內(nèi)零點(diǎn)的近似解.(精確到0.1)

查看答案和解析>>

同步練習(xí)冊答案