在△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,若b2-c2=
3
ac,sinA=2
3
sinC,則B=( 。
A、30°B、60°
C、120°D、150°
考點:余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:將sinA=2
3
sinC,利用正弦定理化簡得到a=2
3
c,代入b2-c2=
3
ac,表示出b,再利用余弦定理表示出cosB,將表示出的a與b代入求出cosB的值,即可確定出B的度數(shù).
解答: 解:將sinA=2
3
sinC,利用正弦定理化簡得到a=2
3
c,
代入b2-c2=
3
ac,得:b2-c2=6c2,即b2=7c2
整理得:b=
7
c,
∴cosB=
a2+c2-b2
2ac
=
12c2+c2-7c2
4
3
c2
=
3
2
,
則B=30°.
故選:A.
點評:此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明1+
1
2
+
1
3
+…+
1
2n-1
<n(n>1,n∈N*),在驗證n=2成立時,左式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如圖所示函數(shù)圖象

其中可能為函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的圖象是( 。
A、①②B、②④C、①③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)tan21°+tan24°+tan21°tan24°=( 。
A、1
B、-1
C、
3
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若連續(xù)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(2-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( 。
A、f(x)有極大值f(3)和極小值f(2)
B、f(x)有極大值f(-3)和極小值f(2)
C、f(x)有極大值f(3)和極小值f(-3)
D、f(x)有極大值f(-3)和極小值f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,且S2=6,a1=4,則公差d等于(  )
A、3B、2C、1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a1=3,a2=9,則數(shù)列{an}的前4項和為(  )
A、81B、120
C、168D、192

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
sinα-cosα
2sinα+3cosα
=
1
5
,則tanα的值是(  )
A、±
8
3
B、
8
3
C、-
8
3
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若實數(shù)x,y滿足:
x-y+1≤0
x>0
,求
y
x
的范圍;
(2)設(shè)正數(shù)x,y滿足x+2y=1,求
1
x
+
1
y
的最小值;
(3)已知x<
5
4
,求y=4x+
1
4x-5
-2的最大值.

查看答案和解析>>

同步練習(xí)冊答案