16.函數(shù)f(x)=$\frac{3x}{{\sqrt{x-1}}}+ln(2x-{x^2})$的定義域?yàn)椋ā 。?table class="qanwser">A.(2,+∞)B.(1,2)C.(0,2)D.[1,2]

分析 由分母中根式內(nèi)部的代數(shù)式大于0,對數(shù)式的真數(shù)大于0聯(lián)立不等式組求解.

解答 解:要使原函數(shù)有意義,則$\left\{\begin{array}{l}{x-1>0}\\{2x-{x}^{2}>0}\end{array}\right.$,
解得:1<x<2.
∴函數(shù)f(x)=$\frac{3x}{{\sqrt{x-1}}}+ln(2x-{x^2})$的定義域?yàn)椋?,2).
故選:B.

點(diǎn)評 本題考查函數(shù)的定義域及其求法,考查了不等式組的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.比5000小且沒有重復(fù)數(shù)字的正整數(shù)共有多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,D為邊BC上一點(diǎn),CD=2BD,∠ADB=120°,AD=2,且△ADC的面積為$\sqrt{3}$.
(Ⅰ)求sinB的值;
(Ⅱ)求cos(2B-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足a1=1,|an+1-an|=pn,其中n∈N*,p是不為1的常數(shù).
(Ⅰ)證明:若{an}是遞增數(shù)列,則{an}不可能是等差數(shù)列;
(Ⅱ)證明:若{an}是遞減的等比數(shù)列,則{an}中的每一項(xiàng)都大于其后任意m(m∈N*)個項(xiàng)的和;
(Ⅲ)若p=2,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≤2}\\{x-y≤2}\\{x≥1}\end{array}}\right.$,那么z=2x+y的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某人租用一塊土地種植一種瓜類作物,租期5年,根據(jù)以往的年產(chǎn)量數(shù)據(jù),得到年產(chǎn)量頻率分布直方圖如圖所示,以各區(qū)間中點(diǎn)值作為該區(qū)間的年產(chǎn)量,得到平均年產(chǎn)量為455kg.當(dāng)年產(chǎn)量低于450kg時,單位售價為12元/kg,當(dāng)年產(chǎn)量不低于450kg時,單位售價為10元/kg.
(Ⅰ)求圖中a的值;
(Ⅱ)以各區(qū)間中點(diǎn)值作為該區(qū)間的年產(chǎn)量,并以年產(chǎn)量落入該區(qū)間的頻率作為年產(chǎn)量取該區(qū)間中點(diǎn)值的概率,求年銷售額X(單位:元)的分布列;
(Ⅲ)求在租期5年中,至少有2年的年銷售額不低于5000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=2,BC=1,P是腰AB上的動點(diǎn),則|$\overrightarrow{PC}$+$\overrightarrow{PD}$|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知實(shí)數(shù)m,n,且點(diǎn)(1,1)在不等式組$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-2mx≤2}\\{ny≥1}\\{\;}\end{array}\right.$表示的平面區(qū)域內(nèi),則m+2n的取值范圍為[$\frac{3}{2}$,4],m2+n2的取值范圍為[1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若數(shù)列{an}滿足:a1=0,a2=3且(n-1)an+1=(n+1)an-n十1(n∈N*,n≥2),數(shù)列{bn}滿足bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1,則數(shù)列{bn}的最大項(xiàng)為第6項(xiàng).

查看答案和解析>>

同步練習(xí)冊答案