2.若集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種分拆,寫出集合A={a,b}的不同分拆.

分析 由已知條件利用并集的性質(zhì)直接求解.

解答 解:當(dāng)集合A1=∅時(shí),A2=A={a,b},A1∪A2=A,此時(shí)只有一種分拆;
當(dāng)A1為單元素時(shí),
若A1={a},則A2=,或A2={a,b};
若A1=,則A2={a},或A2={a,b}.
此時(shí)有4種分拆;
當(dāng)A1中含有兩個(gè)元素時(shí),A1=A={a,b},
A2可取A的任何子集,此時(shí)有4種分拆.
綜上,共有9種不同分拆.

點(diǎn)評(píng) 本題考查集合的不同分拆的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線W的頂點(diǎn)在原點(diǎn),且焦點(diǎn)為F(1,0),不經(jīng)過焦點(diǎn)F的直線l與拋物線W相交于A,B兩點(diǎn),且拋物線W上存在一點(diǎn)C,使得四邊形ACBF為平行四邊形.
(I)求拋物線W的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:直線l恒過定點(diǎn);
(Ⅲ)求四邊形ACBF面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.曲線的參數(shù)方程為$\left\{\begin{array}{l}{x=3t+2}\\{y=t-1}\end{array}\right.$(t是參數(shù),1≤t≤3),則曲線是(  )
A.線段B.雙曲線的一支C.D.射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且滿足3asinC=4ccosA,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(Ⅰ)求△ABC的面積S;
(Ⅱ)若c=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“a=1”是“函數(shù)f(x)=x2-2ax+b在區(qū)間[1,+∞)上為增函數(shù)”的(  )
A.既不充分也不必要條件B.必要不充分條件
C.充要條件D.充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)若x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=1,x+x-1=3;
(2)若(1)中條件不變,求x2+x-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知定義在(0,+∞)上的函數(shù)f(x),滿足f(mn)=f(m)+f(n)(m,n>0),且當(dāng)x>1時(shí),有f(x)>0.
①求證:f($\frac{m}{n}$)=f(m)-f(n);
②求證:f(x)在(0,+∞)上是增函數(shù);
③比較f($\frac{m+n}{2}$)與$\frac{f(m)+f(n)}{2}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知tanα=2,求下列各式的值.
(1)$\frac{sinα-4cosα}{5sinα+2cosα}$;     
(2)4sin2α-3sinαcosα-5cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=$\frac{3x+1}{x-2}$的值域?yàn)閧y∈R|y≠3}.

查看答案和解析>>

同步練習(xí)冊(cè)答案