17.“a=1”是“函數(shù)f(x)=x2-2ax+b在區(qū)間[1,+∞)上為增函數(shù)”的( 。
A.既不充分也不必要條件B.必要不充分條件
C.充要條件D.充分不必要條件

分析 函數(shù)f(x)=x2-2ax+b在區(qū)間[1,+∞)上為增函數(shù),可得a≤1,即可判斷出結(jié)論.

解答 解:∵函數(shù)f(x)=x2-2ax+b在區(qū)間[1,+∞)上為增函數(shù),∴a≤1,
∴“a=1”是“函數(shù)f(x)=x2-2ax+b在區(qū)間[1,+∞)上為增函數(shù)”的充分不必要條件.
故選:D.

點(diǎn)評 本題考查了不等式的解法、函數(shù)的性質(zhì)、簡易邏輯的判斷方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知$f(\frac{2}{x}+1)$=lgx,求f(x);
(2)定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BC=1,BB1=2,∠BCC1=60°.
(1)求證:C1B⊥平面ABC;
(2)試在棱CC1(不包含端點(diǎn))上確定一點(diǎn)E的位置,使得EA⊥EB1;
(3)在(2)的條件下,若AB=$\sqrt{2}$,求二面角A-EB1-A1的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系xOy 中,已知點(diǎn)A(2,-1)和坐標(biāo)滿足$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$的動點(diǎn)M(x,y),則目標(biāo)函數(shù)z=$\overrightarrow{OA}•\overrightarrow{OM}$的最大值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)y=lnsinex,則dy=$\frac{{e}^{x}cos{e}^{x}}{sin{e}^{x}}$dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時,(A1,A2)與(A2,A1)為集合A的同一種分拆,寫出集合A={a,b}的不同分拆.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點(diǎn)P(x1,y1),Q(x2,y2),之間的“折線距離”.在這個定義下,給出下列命題:
①到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合是一個正方形;
②到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合是一個圓;
③到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”之和為4的點(diǎn)的集合是面積為6的六邊形;
④到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”差的絕對值為1的點(diǎn)的集合是兩條平行線.
其中正確的命題是①③④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x>0時,f(x)=x2-4x,則f(x+2)<5的解集是(-7,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線C:y2=4x的焦點(diǎn)為F,定點(diǎn)A(0,-2),若射線FA與拋物線C交于點(diǎn)M,與拋物線C的準(zhǔn)線交于點(diǎn)N,則|MN|:|FN|的值是( 。
A.($\sqrt{5}$-2):$\sqrt{5}$B.2:$\sqrt{5}$C.1:2$\sqrt{5}$D.$\sqrt{5}$:(1+$\sqrt{5}$)

查看答案和解析>>

同步練習(xí)冊答案