函數(shù)y=x+
1
x
,(x>0)單調(diào)減區(qū)間是
 
分析:由已知中函數(shù)的解析式,我們可以求出其導(dǎo)函數(shù)的解析式,根據(jù)導(dǎo)函數(shù)在函數(shù)的單調(diào)遞減區(qū)間上函數(shù)值小于0,我們可以構(gòu)造一個關(guān)于x的不等式,解不等式,即可求出滿足條件的x的取值范圍,得到答案.
解答:解:∵函數(shù)y=x+
1
x
,(x>0)
y′=1-
1
x2
,(x>0)
令y′>0,即1-
1
x2
<0
解得0<x<1
故函數(shù)y=x+
1
x
,(x>0)單調(diào)減區(qū)間是(0,1)
故答案為:(0,1)
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)的單調(diào)性及單調(diào)區(qū)間,函數(shù)的單調(diào)性的判斷與證明,其中根據(jù)導(dǎo)函數(shù)在函數(shù)的單調(diào)遞減區(qū)間上函數(shù)值小于0,構(gòu)造一個關(guān)于x的不等式,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+
1
x
(x>0)的值域?yàn)椋ā 。?/div>
A、[2,+∞)
B、(2,+∞)
C、(0,+∞)
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P是函數(shù)y=x+
1x
上的圖象上任意一點(diǎn),則P到y(tǒng)軸的距離與P到y(tǒng)=x的距離之積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是( 。
A、?x∈R,使2x2-x+1<0成立
B、?x>0,都有lgx+
1
lgx
≥2
成立
C、函數(shù)y=
x2+2
+
1
x2+2
的最小值為2
D、0<x≤2時,函數(shù)y=x-
1
x
有最大值為
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題為真命題的個數(shù)( 。
①若命題p:?x∈R,x2-x-1>0則¬p:?x∈R,x2-x-1≤0
②要得到y=sin(2x+
π
3
)
的圖象,可以將y=sinx橫坐標(biāo)變?yōu)樵瓉淼?倍向左移動
π
3

y=sin(2x+
π
3
),(x∈(
π
6
π
2
)
的值域?yàn)?span id="ddcf2iz" class="MathJye">(-
3
2
,1)
④x<1函數(shù)y=x+
1
x-1
的值域(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,其中正確命題的序號為
.:
①x>2是x2-3x+2>0的充分不必要條件.
②函數(shù)y=
x-1
x+1
圖象的對稱中心是(1,1).
③若函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax(x≥1)
,對任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,則實(shí)數(shù)a的取值范圍是(
1
7
,1)

查看答案和解析>>

同步練習(xí)冊答案