B
分析:根據(jù)指數(shù)函數(shù)的單調(diào)性可知,y=e
x+1在(-∞,0)單調(diào)遞增;當(dāng)x
1<x
2<0,-x
1>-x
2,ln(-x
1)>ln(-x
2),即y
1>y
2;由反比例函數(shù)的性質(zhì)可知,y=
在(-∞,-1)上單調(diào)遞減,在(-1,0)上單調(diào)遞增;y=(x+1)
2在(-∞,-1)上單調(diào)遞減,在(-1,0)上單調(diào)遞增
解答:A:根據(jù)指數(shù)函數(shù)的單調(diào)性可知,y=e
x+1在(-∞,0)單調(diào)遞增,不合題意
B:當(dāng)x
1<x
2<0,-x
1>-x
2,由對數(shù)函數(shù)的性質(zhì)可知,ln(-x
1)>ln(-x
2),即y
1>y
2,y=ln(-x)在(-∞,0)單調(diào)遞減,合題意
C:由反比例函數(shù)的性質(zhì)可知,y=
在(-∞,-1)上單調(diào)遞減,在(-1,0)上單調(diào)遞減,不合題意,
D:y=(x+1)
2在(-∞,-1)上單調(diào)遞減,在(-1,0)上單調(diào)遞增不合題意
故選B
點評:本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)、反比例函數(shù)及二次函數(shù)等一些常見的基本初等函數(shù)的單調(diào)性的判斷.