【題目】如圖所示的多面體中, ACBC,四邊形ABED是正方形,平面ABED⊥平面ABC,F,G,H分別為BD,EC,BE的中點,求證:

(1) BC⊥平面ACD

(2)平面HGF∥平面ABC.

【答案】1)證明見解析;(2)證明見解析.

【解析】

1)利用面面垂直的性質證得平面,得出即可;

2)利用中位線關系證明平行于平面即可.

1)由題:平面ABED⊥平面ABC,交線為

四邊形ABED是正方形,所以,平面ABED,

所以平面平面,,

由題ACBC, 是平面ACD內(nèi)的兩條相交直線,

所以BC⊥平面ACD

2)在分別是的中點,所以平面,

平面,所以平面,

分別是的中點,所以 所以,

平面,

平面,所以平面,是平面內(nèi)兩條相交直線,

所以平面HGF∥平面ABC.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線 的焦點的直線與拋物線在第一象限的交點為,與拋物線準線的交點為 ,點在拋物線準線上的射影為,若 的面積為 .

( 1 ) 求拋物線的標準方程;

( 2 ) 過焦點的直線與拋物線交于兩點,拋物線在點處的切線分別為,且相交于點,軸交于點,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調區(qū)間;

(2)若關于的方程有實數(shù)解,求實數(shù)的取值范圍;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】羽毛球比賽中采用每球得分制,即每回合中勝方得1分,負方得0分,每回合由上回合的勝方發(fā)球.設在甲、乙的比賽中,每回合發(fā)球,發(fā)球方得1分的概率為0.6,各回合發(fā)球的勝負結果相互獨立.若在一局比賽中,甲先發(fā)球.

1)求比賽進行3個回合后,甲與乙的比分為的概率;

2表示3個回合后乙的得分,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是實數(shù),函數(shù).

1)若,求的值及曲線在點處的切線方程;

2)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】寒假即將到來,某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿.當每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每在支出20元的各種費用(人工費,消耗費用等等).受市場調控,每個房間每天的房價不得高于340.設每個房間的房價每天增加x(x10的正整數(shù)倍)

(1)設賓館一天的利潤為W, Wx的函數(shù)關系式;

(2)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)滿足:對任意都有.

1)求證:函數(shù)是奇函數(shù);

2)如果當時,有,試判斷上的單調性,并用定義證明你的判斷;

(3)在(2)的條件下,若對滿足不等式的任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在無窮數(shù)列中,,對于任意,都有,,設,記使得成立的的最大值為

)設數(shù)列,,,,,寫出,,的值.

)若為等差數(shù)列,求出所有可能的數(shù)列

,,求的值.(用,表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某餐廳經(jīng)營盒飯生意,每天的房租、人員工資等固定成本為200元,每盒盒飯的成本為15元,銷售單價與日均銷售量的關系如下表

根據(jù)以上數(shù)據(jù),當這個餐廳每盒盒飯定價______元時,利潤最大

A.16.5B.19.5C.21.5D.22

查看答案和解析>>

同步練習冊答案