已知(
3x
+x2)
2n
的展開式的系數(shù)和比(3x-1)n的展開式的系數(shù)和大992,求(2x-
1
x
2n的展開式中:
(1)二項式系數(shù)最大的項;
(2)系數(shù)的絕對值最大的項.
由題意知:22n-2n=992,解得n=5.
(1)(2x-
1
x
)
10
的展開式中第6項的二項式系數(shù)最大,即
T6C10(2x)5(-
1
x
)
5
 =-8064

(2)設第r+1項的系數(shù)的絕對值最大,因為Tr+1=C10(2x)10-r(-
1
x
)
r
=(-1)rC10r210-rx10-2r

C10r210-rC10(r-1)210-r+1
C10r210-rC10(r+1)210-r-1
,得
C10r≥2C10r-1
2C10r≥C10r+1

11-r≥2r
2(r+1)≥
10-r

解得
8
3
≤r≤
11
3

所以r=3,故系數(shù)的絕對值最大的項是第4項
T4=C103(2x)7(-
1
x
)
3
=-15360x4
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知不等式x2-3x+t<0的解集為{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函數(shù)f(x)=-x2+ax+4在區(qū)間(-∞,1]上遞增,求關(guān)于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知P={x|x2-3x+2=0},Q={x|ax-2=0},Q⊆P,求a的值.
(2)已知A={x|2≤x≤3},B={x|m+1≤x≤2m+5},B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(
3x
+x2)
2n
的展開式的系數(shù)和比(3x-1)n的展開式的系數(shù)和大992,求(2x-
1
x
2n的展開式中:
(1)二項式系數(shù)最大的項;
(2)系數(shù)的絕對值最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2-4x+4y+8-k=0關(guān)于直線x-y-2=0對稱的圓是圓C,且圓C與直線3x+4y-40=0相切,求實數(shù)k的值.

查看答案和解析>>

同步練習冊答案