【題目】設(shè)、是兩個(gè)不同的平面,、是兩條不同的直線,有下列命題:

①如果,,那么;

②如果,,那么;

③如果,,那么;

④如果平面內(nèi)有不共線的三點(diǎn)到平面的距離相等,那么;

其中正確的命題是(

A.①②B.②③C.②④D.②③④

【答案】B

【解析】

根據(jù)線面垂直與線面平行的性質(zhì)可判斷①;由直線與平面垂直的性質(zhì)可判斷②;由直線與平面平行的性質(zhì)可判斷③;根據(jù)平面與平面平行或相交的性質(zhì),可判斷④.

對(duì)于①如果,,,根據(jù)線面垂直與線面平行性質(zhì)可知,所以①錯(cuò)誤

對(duì)于②如果,,根據(jù)直線與平面垂直的性質(zhì)可知,所以②正確;

對(duì)于③如果,,根據(jù)直線與平面平行的判定可知,所以③正確;

對(duì)于④如果平面內(nèi)有不共線的三點(diǎn)到平面的距離相等,當(dāng)兩個(gè)平面相交時(shí),若三個(gè)點(diǎn)分布在平面的兩側(cè),也可以滿足條件,所以錯(cuò)誤,所以④錯(cuò)誤;

綜上可知,正確的為②③

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).

(1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大;

(2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形, 邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.

(1)求的最大值;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角,所對(duì)邊分別為,,.已知.

(1) ;

(2) 為銳角三角形,且,求面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)fx)=|xm|+|x|,mN*,存在實(shí)數(shù)x使fx)<2成立.

1)求不等式fx)>8的解;

2)若α,β≥1fα+fβ)=4,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí) 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在點(diǎn)處的切線方程;

(2)存在極小值點(diǎn)與極大值點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,動(dòng)圓與圓外切,且與直線相切,該動(dòng)圓圓心的軌跡為曲線.

1)求曲線的方程

2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),拋物線在點(diǎn)A的切線與交于點(diǎn)N,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD 中,PAD 為等邊三角形,底面ABCD為等腰梯形,滿足ABCD,ADDCAB2,且平面PAD⊥平面ABCD

(1)證明:BD⊥平面PAD

(2)求點(diǎn)C到平面PBD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案