正三棱錐S-ABC的四個(gè)頂點(diǎn)都在半徑為1的球面上,其中底面的三個(gè)頂點(diǎn)在該球的一個(gè)大圓上,球心為O,M是線(xiàn)段SO的中點(diǎn),過(guò)M與SO垂直的平面分別截三棱錐S-ABC和球所得平面圖形的面積比為   
【答案】分析:根據(jù)組合體的結(jié)構(gòu)特征,得出截面三角形的面積S1=S△ABC=,再求出平面截球所得截面圓半徑為=得出截面圓面積,再求比值即可.
解答:解:由已知,△ABC是求大圓的內(nèi)接正三角形,由于半徑為1,所以邊長(zhǎng)AB=,S△ABC==
因?yàn)镸是線(xiàn)段SO的中點(diǎn),且SO=1,所以平面截三棱錐S-ABC所得截面三角形的面積S1=S△ABC=
平面截球所得截面圓半徑為=.截面圓面積S2=π×=,面積之比為
故答案為:
點(diǎn)評(píng):本題考查球的內(nèi)接幾何體問(wèn)題,考查分析、空間想象能力,轉(zhuǎn)化計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正三棱錐S-ABC中,底面的邊長(zhǎng)是3,棱錐的側(cè)面積等于底面積的2倍,M是BC的中點(diǎn).
求:(1)
AMSM
的值;
(2)二面角S-BC-A的大;
(3)正三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)正三棱錐S-ABC的側(cè)棱長(zhǎng)為2,側(cè)面等腰三角形的頂角為30°,過(guò)底面頂點(diǎn)作截面△AMN交側(cè)棱SB、SC分別于M、N兩點(diǎn),則△AMN周長(zhǎng)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐S-ABC的三條側(cè)棱兩兩互相垂直,且SA=2
3
,則正三棱錐S-ABC的外接球的表面積是(  )
A、12πB、32π
C、36πD、48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖正三棱錐S-ABC的側(cè)棱與底面邊長(zhǎng)相等,如果E、F分別是SC、AB的中點(diǎn),那么異面直線(xiàn)EF與SA所成的角為
45°
45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•南充三模)已知正三棱錐S-ABC的側(cè)棱與底面邊長(zhǎng)相等,E、F分別為側(cè)棱SC底邊AB的中點(diǎn),則異面直線(xiàn)EF與SA所成角的大小是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案