已知函數(shù) 的圖象過點(0, ),最小正周期為 ,且最小值為-1.
(1)求函數(shù)的解析式.
(2)若 ,的值域是 ,求m的取值范圍.
(1);(2)
解析試題分析:(1)根據(jù)余弦函數(shù)的性質(zhì)求出最大值A(chǔ),再利用周期公式求出參數(shù),最后根據(jù)三角函數(shù)值求出的值即可.(2)由題意求出的取值范圍,然后再根據(jù)余弦函數(shù)的性質(zhì)求解即可.
試題解析:(1)由函數(shù)的最小值為-1,可得A=1,因為最小正周期為 ,所以 =3.可得,又因為函數(shù)的圖象過點(0, ),所以,而,所以 ,
故.
(2)由,可知,因為,且cos =-1,,由余弦曲線的性質(zhì)的,,得,即.
考點:(1)余弦函數(shù)的性質(zhì)和圖象;(2)余弦函數(shù)性質(zhì)的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在半徑為、圓心角為60°的扇形的弧上任取一點,作扇形的內(nèi)接矩形,使點在上,點在上,設(shè)矩形的面積為.
(Ⅰ) 按下列要求寫出函數(shù)關(guān)系式:
① 設(shè),將表示成的函數(shù)關(guān)系式;
② 設(shè),將表示成的函數(shù)關(guān)系式.
(Ⅱ) 請你選用(Ⅰ)中的一個函數(shù)關(guān)系式,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,設(shè)函數(shù),.
(Ⅰ)求的最小正周期與最大值;
(Ⅱ)在中, 分別是角的對邊,若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
------①
------②
由①+② 得------③
令 有
代入③得 .
(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:
;
(Ⅱ)若的三個內(nèi)角滿足,試判斷的形狀.
(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知A、B、C坐標(biāo)分別為A(3,0),B(0,3),C(),
(1)若,求角的值
(2)若,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,A,B分別是單位圓與x軸、y軸正半軸的交點,點P在單位圓上,∠AOP=θ(0<θ<π),C點坐標(biāo)為(-2,0),平行四邊形OAQP的面積為S.
(1)求·+S的最大值;
(2)若CB∥OP,求sin的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com