2.假設(shè)四邊形ABCD為圓內(nèi)接正方形,向圓內(nèi)隨機(jī)地投一點,則點落在正方形ABCD內(nèi)的概率為(  )
A.$\frac{\sqrt{2}}{2π}$B.$\frac{1}{π}$C.$\frac{\sqrt{2}}{π}$D.$\frac{2}{π}$

分析 由題意,本題是幾何概型的考查,而事件的集合為面積,利用面積比求概率.

解答 解:由已知設(shè)圓的半徑為r,則圓的面積為πr2,正方形的邊長為$\sqrt{2}$r,面積為2r2,由幾何概型的公式得到點落在正方形ABCD內(nèi)的概率為$\frac{2{r}^{2}}{π{r}^{2}}=\frac{2}{π}$;
故選D.

點評 本題考查了幾何概型概率的求法;關(guān)鍵是明確事件的測度是面積,利用面積比求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知△ABC的頂點坐標(biāo)為A(1,1,1),B(2,2,2),C(3,2,4),則△ABC的面積是( 。
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平行四邊形ABCD中,已知AB=2,AD=1,$\overrightarrow{AB}•\overrightarrow{AC}$=5,
(1)求|$\overrightarrow{AC}$|;
(2)求cos∠DAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.圓(x-1)2+(y-2)2=1關(guān)于直線y=x對稱的圓的方程為(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在區(qū)間[-1,4]上隨機(jī)取實數(shù)a,則方程x2+x+a=0存在實數(shù)根的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知0<φ<π,且滿足sin(φ+$\frac{π}{4}$)=sin(φ-$\frac{π}{4}$),設(shè)函數(shù)f(x)=sin(2x+$\frac{φ}{2}$).
(1)求φ的值;
(2)設(shè)0<α<$\frac{π}{2}$,且cosα=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC的三邊a,b,c所對的角分別為A,B,C,且a:b:c=7:5:3.
(1)求cosA的值;
(2)若△ABC的面積為45$\sqrt{3}$,求△ABC三條邊長a,b,c的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sin2x+sinxcosx-2.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=$\frac{ln(x-1)}{\sqrt{2x-{x}^{2}}}$的定義域為(1,2).

查看答案和解析>>

同步練習(xí)冊答案