命題“若x>2且y>3,則x+y>5”的否命題是    命題.(填入“真”或“假”)
【答案】分析:先寫出命題:若x>2且y>3,則x+y>5”的逆命題,然后進(jìn)行判斷逆命題的真假,根據(jù)互為逆否命題的真假相同即可判斷
解答:解:若x>2且y>3,則x+y>5”的逆命題為:若x+y>5,則x>2且y>3,
此命題為假命題,原因:若x=4,y=1,此時(shí)x+y>5,但是x>2且y>3不成立
而命題的逆命題與否命題的真假相同可知原命題的否命題為假命題
故答案為:假
點(diǎn)評:本題主要考查了四種命題的真假的判斷,解題的關(guān)鍵是準(zhǔn)確寫出原命題的逆命題,根據(jù)互為逆否命題的真假相同,而直接寫出逆命題的真假也可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出如下三個(gè)命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
③四個(gè)實(shí)數(shù)a、b、c、d依次成等比數(shù)列的必要而不充分條件是ad=bc;
④在△ABC中,“A>45°”是“sinA>
2
2
”的充分不必要條件.
其中不正確的命題的個(gè)數(shù)是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下三個(gè)命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
③在△ABC中,“A>45°”是“sinA>
2
2
”的充要條件.
其中不正確的命題的個(gè)數(shù)是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下幾個(gè)命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”
③若直線l過點(diǎn)A(1,2),且它的一個(gè)方向向量為
d
=(1,2)
,則直線l的方程為2x-y=0.
④復(fù)數(shù)z=
(2+i)2
1-i
-1
(i是虛數(shù)單位)在復(fù)平面上對應(yīng)的點(diǎn)位于第二象限
⑤在△ABC中,“A>45°”是“sinA>
2
2
”的充分不必要條件.
其中正確 的命題的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
①命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
②若直線ax+by=4與圓x2+y2=4沒有公共點(diǎn),則點(diǎn)(a,b)一定在圓x2+y2=4外;
③“?x0∈R,使得ax02+(a-3)x0+1≤0”是假命題,則1<a<9;
④某人向一個(gè)圓內(nèi)投鏢,則鏢扎到該圓的內(nèi)接正三角形區(qū)域內(nèi)的概率為
3
3

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下四個(gè)命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
③在△ABC中,“A>45°”是“sinA>
2
2
”的充要條件.
④命題“?x0∈R,ex0≤0”是真命題.
其中正確的命題的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案