分析 (Ⅰ)由函數(shù)f(x)圖象上的一個(gè)最高點(diǎn)為$(\frac{2}{3}π,2)$可得:M,由函數(shù)圖象與y軸交點(diǎn)為(0,1),得$φ=\frac{π}{6}$,點(diǎn)$(\frac{2}{3}π,2)$在函數(shù)f(x)圖象上,得$ω=3k+\frac{1}{2}$,k∈Z,即可求得ω;
(Ⅱ)由(2a-c)cosB=bcosC,得$cosB=\frac{1}{2}$,$B=\frac{π}{3}$,由(Ⅰ)得$f(A)=2sin(\frac{1}{2}A+\frac{π}{6})$,$A∈(0,\frac{2}{3}π)$.即可得函數(shù)f(A)的取值范圍.
解答 解:(Ⅰ)由函數(shù)f(x)圖象上的一個(gè)最高點(diǎn)為$(\frac{2}{3}π,2)$可得:M=2…(2分)
∵函數(shù)圖象與y軸交點(diǎn)為(0,1),∴f(0)=2sin(0+φ)=1,$sinφ=\frac{1}{2}$
又∵$|φ|<\frac{π}{2}$,∴$φ=\frac{π}{6}$,…(4分)
∵點(diǎn)$(\frac{2}{3}π,2)$在函數(shù)f(x)圖象上,∴$2sin(\frac{2}{3}πω+\frac{π}{6})=2$,$\frac{2}{3}πω+\frac{π}{6}=2kπ+\frac{π}{2},k∈Z$,
∴$ω=3k+\frac{1}{2}$,k∈Z,∵0<ω<3,∴$ω=\frac{1}{2}$…(6分)
(Ⅱ)由(2a-c)cosB=bcosC,得2sinAcosB-sinCcosB=sinBcosC
即2sinAcosB=sin(B+C)=sinA,∵0<A<π,∴sinA≠0,$cosB=\frac{1}{2}$,$B=\frac{π}{3}$.…(8分)
由(Ⅰ)得:$f(x)=2sin(\frac{1}{2}x+\frac{π}{6})$∴$f(A)=2sin(\frac{1}{2}A+\frac{π}{6})$
∵A+B+C=π∴$A∈(0,\frac{2}{3}π)$…(10分).
∴$\frac{A}{2}+\frac{π}{6}∈(\frac{π}{6},\frac{π}{2})$,∴$sin(\frac{A}{2}+\frac{π}{6})∈(\frac{1}{2},1)$.
∴函數(shù)f(A)的取值范圍為(1,2)…(12分)
點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象,三角恒等變形,三角函數(shù)的值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
零件數(shù)x(個(gè)) | 10 | 20 | 30 | 40 | 50 |
加工時(shí)間y(分鐘) | 62 | 68 | 75 | 81 | 89 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 74 | B. | 75 | C. | 76 | D. | 77 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{16}$ | C. | 20 | D. | 40 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com