【題目】如圖,三棱柱中,分別為棱的中點.
(1)在上確定點M,使平面,并說明理由。
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值。
【答案】(1)答案見解析;(2).
【解析】
(1)取BC中點M,連接AM,則AM∥平面PQB1;利用面面平行證明線面平行即可;
(2)作QO⊥平面ABB1A1,與A1A延長線交于O,作PN∥C1A1,則直線A1C1與平面PQB1所成角即直線PN與平面PQB1所成角,結(jié)合幾何關系求解直線與平面所成角的正弦值即可.
(1)取BC中點M,連接AM,則AM∥平面PQB1;
如圖所示,取BB1中點N,連結(jié)AM,AN,
為平行四邊形,點N,P為中點,則,由線面平行的判定定理可得平面PQB1,
同理可得,平面PQB1,
據(jù)此可得平面AMN∥平面PQB1,故平面.
(2)作QO⊥平面ABB1A1,與A1A延長線交于O,
則,
,
,
,
,
,
.
作PN∥C1A1,則直線A1C1與平面PQB1所成角即直線PN與平面PQB1所成角,
.
設N到平面PQB1的距離為h,則,
∴直線A1C1與平面PQB1所成角的正弦值為:.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為是上一點.
(1)求橢圓的方程;
(2)設是分別關于兩坐標軸及坐標原點的對稱點,平行于的直線交于異于的兩點.點關于原點的對稱點為.證明:直線與軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),、、,且都有,滿足的實數(shù)有且只有個,給出下述四個結(jié)論:
①滿足題目條件的實數(shù)有且只有個;②滿足題目條件的實數(shù)有且只有個;
③在上單調(diào)遞增;④的取值范圍是.
其中所有正確結(jié)論的編號是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市房產(chǎn)中心數(shù)據(jù)研究顯示,2018年該市新建住宅銷售均價如下表.3月至7月房價上漲過快,為抑制房價過快上漲,政府從8月份開始出臺了相關限購政策,10月份開始房價得到了很好的抑制.
均價(萬元/) | 0.95 | 0.98 | 1.11 | 1.12 | 1.20 | 1.22 | 1.32 | 1.34 | 1.16 | 1.06 |
月份 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
(Ⅰ)請建立3月至7月線性回歸模型(保留小數(shù)點后3位),并預測若政府不宏觀調(diào)控,12月份該市新建住宅銷售均價;
(Ⅱ)試用相關系數(shù)說明3月至7月各月均價(萬元/)與月份之間可用線性回歸模型(保留小數(shù)點后2位)
參考數(shù)據(jù):,,,,
回歸方程斜率和截距最小二乘法估計公式;
相關系數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區(qū)助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質(zhì)壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發(fā)展海產(chǎn)品養(yǎng)殖業(yè)具有得天獨厚的優(yōu)勢.根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗,某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布.
(1)隨機購買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于265克該海產(chǎn)品的概率;
(2)2020年該商家考慮增加先進養(yǎng)殖技術投入,該商家欲預測先進養(yǎng)殖技術投入為49千元時的年收益增量.現(xiàn)用以往的先進養(yǎng)殖技術投入(千元)與年收益增量(千元).的數(shù)據(jù)繪制散點圖,由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近,且,,其中.根據(jù)所給的統(tǒng)計量,求y關于x的回歸方程,并預測先進養(yǎng)殖技術投入為49千元時的年收益增量.
附:若隨機變量,則;
對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com