化簡(jiǎn) 
(1)lg25+lg2×lg50+(lg2)2
(2)當(dāng)8<x<10時(shí),化簡(jiǎn)
(x-8)2
+
(x-10)2
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用對(duì)數(shù)的性質(zhì)和運(yùn)算法則求解.
(2)利用絕對(duì)值的性質(zhì)和根式的運(yùn)算法則求解.
解答: 解:(1)lg25+lg2×lg50+(lg2)2
=2lg5+lg2(lg2+2lg5)+(lg2)2
=2lg5+2(lg2)2+2lg2lg5
=2lg5+2lg2(lg2+lg5)
=2lg5+2lg2
=2.
(2)∵8<x<10,
(x-8)2
+
(x-10)2
=(x-8)+(10-x)=2.
點(diǎn)評(píng):本題考查對(duì)數(shù)式和根式的化簡(jiǎn)求值,是基礎(chǔ)題,解題時(shí)要注意對(duì)數(shù)的性質(zhì)和運(yùn)算法則、絕對(duì)值的性質(zhì)和根式的運(yùn)算法則的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈[0,+∞)時(shí)是增函數(shù),則不等式f(2x+
1
2
)<0
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下幾個(gè)結(jié)論,其中正確結(jié)論的個(gè)數(shù)為(  )
(1)將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,平均數(shù)與標(biāo)準(zhǔn)差均沒有變化;
(2)在線性回歸分析中,相關(guān)系數(shù)r越小,表明兩個(gè)變量相關(guān)越弱;
(3)直線l垂直于平面α的充要條件是l垂直于平面α內(nèi)的無(wú)數(shù)條直線;
(4)某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,剛樣本容量為15.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四組中的函數(shù)f(x)與g(x),是同一函數(shù)的是( 。
A、f(x)=ln(1-x)+ln(1+x),g(x)=ln(1-x2
B、f(x)=lgx2,g(x)=2lgx
C、f(x)=
x+1
x-1
,g(x)=
x2-1
D、f(x)=
x2-1
x-1
,g(x)=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三國(guó)時(shí)期趙爽在《勾股方圓圖注》中對(duì)勾股定理的證明可用現(xiàn)代數(shù)學(xué)表述為如圖所示,我們教材中利用該圖作為“( 。钡膸缀谓忉專
A、如果a>b,b>c,那么a>c
B、如果a>b>0,那么a2>b2
C、對(duì)任意實(shí)數(shù)a和b,有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立
D、如果a>b,c>0那么ac>bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,當(dāng)a2+a9=-4時(shí),它的前10項(xiàng)和S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(x+y)n的展開式中,若第8項(xiàng)系數(shù)最大,則n的值可能等于( 。
A、14,15
B、15,16
C、16,17
D、14,15,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x0∈R,使得x03<0”的否定為( 。
A、?x0∈R,使得x03≥0
B、?x∈R,x3<0
C、?x∈R,使得x3≤0
D、?x∈R,x3≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-x+a有且只有一個(gè)零點(diǎn).
(1)求a的值;
(2)若對(duì)任意的x∈(1,+∞),有2f(x)<
k
x
-x+2恒成立,求實(shí)數(shù)k的最小值;
(3)設(shè)h(x)=f(x)+x-1,對(duì)任意x1,x2∈(0,+∞)(x1≠x2),證明:不等式
x1-x2
h(x1)-h(x2)
x1x2
恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案