20.用數(shù)列歸納法證明$\frac{1}{2}+cosα+cos2α+…+cosnα=\frac{{sin(n+\frac{1}{2})α}}{{2sin\frac{α}{2}}}$時,驗證n=1時,左邊式子為( 。
A.$\frac{1}{2}$B.cosαC.$\frac{1}{2}+cosα$D.$\frac{{sin\frac{3}{2}α}}{{2sin\frac{α}{2}}}$

分析 把n=1代入左邊,得出最后一項即可得出結(jié)論.

解答 解:當n=1時,左邊第一項為$\frac{1}{2}$,最后一項為cosα,
故n=1時,左邊式子為$\frac{1}{2}$+cosα,
故選C.

點評 本題考查了數(shù)學歸納法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.若Z=$\frac{1-2i}{1-i}$,則|Z|=( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓E的中心在原點,焦點F1,F(xiàn)2在y軸上,離心率為$\frac{{2\sqrt{2}}}{3}$,P是橢圓E上的點,以線段PF1為直徑的圓經(jīng)過F2,且$9\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)作直線l與橢圓交于兩個不同的點M,N,如果線段MN被直線2x+1=0平分,求直線l的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.△ABC中,已知a=2,b=x,B=60°,如果△ABC 有兩組解,則x的取值范圍(  )
A.x>2B.$\sqrt{3}<$x<2C.2<x<$\frac{4}{3}$$\sqrt{3}$D.2<x≤$\frac{4}{3}$$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.下表是一個有i行j列的表格.已知每行每列都成等差數(shù)列,
47a1,3a1,j
712a2,3a2,j
aa3,2a3,3a3,j
ai,1ai,2ai,3ai,j
其中ai,j表示表格中第i行第j列的數(shù),則a4,5=49,ai,j=2ij+i+j.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y-1≤0.\end{array}\right.$若目標函數(shù)z=ax+y(a>0)僅在(3,0)點處取得最大值,則a的取值范圍是(  )
A.$a>\frac{1}{2}$B.a>$\frac{1}{3}$C.0<a<$\frac{1}{2}$D.a>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.袋中裝有大小相同的4個紅球和6個白球,從中取出4個球.
(1)若取出的球必須是兩種顏色,則有多少種不同的取法?
(2)若取出的紅球個數(shù)不少于白球個數(shù),則有多少種不同的取法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.曲線f(x)=-$\frac{\sqrt{3}}{3}{x}^{3}$+2在x=1處的切線傾斜角是( 。
A.$\frac{1}{6}π$B.$\frac{1}{3}π$C.$\frac{5}{6}π$D.$\frac{2}{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.如圖,已知在三棱錐P-ABC中,PC⊥平面ABC,AB⊥BC,若PC=BC=8,AB=4,E,F(xiàn)分別是PA,PB的中點,設三棱錐P-CEF的外接球的球心為O,則△AOB的面積為8$\sqrt{5}$.

查看答案和解析>>

同步練習冊答案