9.雙曲線C:$\frac{{x}^{2}}{16}$$-\frac{{y}^{2}}{4}$=1的、左右焦點(diǎn)分別為F1,F(xiàn)2,M(1,4),點(diǎn)F1,F(xiàn)2分別為△MAB的邊MA,MB的中點(diǎn),點(diǎn)N在第一象限內(nèi),線段MN的中點(diǎn)恰好在雙曲線C上,則|AN|-|BN|的值為16.

分析 連接PF1,PF2,運(yùn)用雙曲線的定義和三角形的中位線定理,計(jì)算即可得到所求值.

解答 解:雙曲線C:$\frac{{x}^{2}}{16}$$-\frac{{y}^{2}}{4}$=1中,a=4,
連接PF1,PF2,
由PF1是△MAN的中位線,
可得|AN|=2|PF1|,
由PF2是△MBN的中位線,
可得|BN|=2|PF2|,
由雙曲線的定義可得:
|PF1|-|PF2|=2a=8,
則|AN|-|BN|=2(|PF1|-|PF2|)=2×8=16.
故答案為:16.

點(diǎn)評(píng) 本題考查雙曲線的定義、方程的運(yùn)用,考查三角形的中位線定理的運(yùn)用,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.△ABC中,頂點(diǎn)A的坐標(biāo)為(1,2),高BE,CF所在直線的方程分別為2x-3y+1=0,x+y=0,求這個(gè)三角形三條邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若關(guān)于x的方程xlnx-kx+1=0在區(qū)間[$\frac{1}{e}$,e]上有兩個(gè)不等實(shí)根,則實(shí)數(shù)k的取值范圍是(1,1+$\frac{1}{e}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,給出的3個(gè)三角形圖案中圓的個(gè)數(shù)依次構(gòu)成一個(gè)數(shù)列的前3項(xiàng),則這個(gè)數(shù)列的一個(gè)通項(xiàng)公式是( 。
A.2n+1B.3nC.$\frac{{n}^{2}+2n}{2}$D.$\frac{{n}^{2}+3n+2}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列四個(gè)命題:
①共線向量是在同一條直線上的向量;
②若兩個(gè)向量不相等,則它們的終點(diǎn)不可能是同一點(diǎn);
③與已知非零向量共線的單位向量是唯一的;
④若四邊形ABCD是平行四邊形,則$\overrightarrow{AB}$與$\overrightarrow{CD}$,$\overrightarrow{BC}$與$\overrightarrow{AD}$分別共線.
其中正確命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知雙曲線的方程為$\frac{{x}^{2}}{3}$-y2=1,則該雙曲線的漸近線方程是( 。
A.y=±xB.y=±3xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)a>0,b>0,若2是4a和2b的等比中項(xiàng),則$\frac{2}{a}$+$\frac{1}$的最小值為( 。
A.$\sqrt{2}$B.4C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)等差數(shù)列{an}的公差d>0,且a1>0,記Tn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$.
(1)用a1、d分別表示T1、T2、T3,并猜想Tn
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°,動(dòng)點(diǎn)E和F分別在線段BC和DC上,且$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$,則$\overrightarrow{AE}•\overrightarrow{AF}$的最小值為(  )
A.$\frac{27}{18}$B.$\frac{29}{18}$C.$\frac{17}{18}$D.$\frac{13}{18}$

查看答案和解析>>

同步練習(xí)冊(cè)答案