分析 由正三棱錐S-ABC的所有棱長均為a,所以此三棱錐一定可以放在棱長為$\frac{\sqrt{2}}{2}$a的正方體中,所以此四面體的外接球即為此正方體的外接球,由此能求出此四面體的外接球的半徑,再代入體積公式計算.
解答 解:∵正三棱錐的所有棱長均為a,
∴此三棱錐一定可以放在正方體中,
∴我們可以在正方體中尋找此三棱錐.
∴正方體的棱長為$\frac{\sqrt{2}}{2}$a,
∴此四面體的外接球即為此正方體的外接球,
∵外接球的直徑為正方體的對角線長,
∴外接球的半徑為R=$\frac{\sqrt{6}}{4}$a,
∴球的表面積=4πR2=$\frac{3}{2}{a^2}π$.
故答案為:$\frac{3}{2}{a^2}π$.
點(diǎn)評 本題考查幾何體的接體問題,考查了空間想象能力,其解答的關(guān)鍵是根據(jù)幾何體的結(jié)構(gòu)特征,求出接體幾何元素的數(shù)據(jù),代入體積公式分別求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k | B. | -k | C. | $\frac{1}{k}$ | D. | -$\frac{1}{k}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com