【題目】在銳角ABC中,角A、B、C所對(duì)的邊分別為a,b,c,b=4,c=6,且asinB=2 .
(1)求角A的大。
(2)若D為BC的中點(diǎn),求線段AD的長(zhǎng).
【答案】解:(1)根據(jù)正弦定理得,,
所以,asinB=bsinA=2,
因?yàn)椋琤=4,所以,sinA=,
且三角形為銳角三角形,
所以,A=;
(2)由(1)得,cosA=,
根據(jù)余弦定理,a2=b2+c2﹣2bccosA,
所以,a2=42+62﹣2×4×6×=28,
解得a=2,
因?yàn)镈為BC的中點(diǎn),則AD為BC邊的中線,
因此,根據(jù)三角形中線長(zhǎng)公式:
|AD|=ma==,
即線段AD的長(zhǎng)度為.
【解析】(1)根據(jù)正弦定理得出asinB=bsinA,從而求出sinA;
(2)先根據(jù)余弦定理求出邊長(zhǎng)a,再用中線長(zhǎng)公式得出AD的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),函數(shù)
(1)當(dāng)時(shí),解關(guān)于的不等式: ;
(2)若且,已知函數(shù)有兩個(gè)零點(diǎn)和,若點(diǎn), ,其中是坐標(biāo)原點(diǎn),證明: 與不可能垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若存在,且,使得,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四組函數(shù),表示同一函數(shù)的是( )
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把正方形AA1B1B以邊AA1所在直線為軸旋轉(zhuǎn)900到正方形AA1C1C,其中D,E,F(xiàn)分別為B1A,C1C,BC的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1F⊥平面AEF;
(3)求二面角A﹣EB1﹣F的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AM與圓C1:(x+4)2+y2=2外切,與圓C2:(x﹣4)2+y2=2內(nèi)切,求動(dòng)圓圓心M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了制作廣告牌,需在如圖所示的鐵片上切割出一個(gè)直角梯形,已知鐵片由兩部分組成,半徑為1的半圓及等腰直角三角形,其中,為裁剪出面積盡可能大的梯形鐵片(不計(jì)損耗),將點(diǎn)放在弧上,點(diǎn)放在斜邊上,且,設(shè).
(1)求梯形鐵片的面積關(guān)于的函數(shù)關(guān)系式;
(2)試確定的值,使得梯形鐵片的面積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四組函數(shù),表示同一函數(shù)的是( )
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出的以下四個(gè)問(wèn)題中,不需要用條件語(yǔ)句來(lái)描述其算法是( )
A.輸入一個(gè)實(shí)數(shù)x,求它的絕對(duì)值
B.求面積為6的正方形的周長(zhǎng)
C.求三個(gè)數(shù)a、b、c中的最大數(shù)
D.求函數(shù)f(x)= 的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com