為使函數(shù)f ( x ) = x 2 + 2 x + cos 2 θ 3 sin θ + 2的值恒為正,則參數(shù)θ在區(qū)間 ( 0,π )上的取值范圍是         。
 ( 0,) ∪ (,π )
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-6x2的定義域為[-2,t],設(shè)f(-2)=m,f(t)=n,f′(x)是f(x)的導(dǎo)數(shù).
(Ⅰ)求證:n≥m;
(Ⅱ)確定t的范圍使函數(shù)f(x)在[-2,t]上是單調(diào)函數(shù);
(Ⅲ)求證:對于任意的t>-2,總存在x0∈(-2,t),滿足f(x0)=
n-mt+2
;并確定這樣的x0的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x3-3x2cosθ+
316
cosθ
,其中x∈R,θ為參數(shù),且0≤θ≤2π.
(Ⅰ)當(dāng)cosθ=0時,判斷函數(shù)f(x)是否有極值;
(Ⅱ)要使函數(shù)f(x)的極小值大于零,求參數(shù)θ的取值范圍;
(Ⅲ)若對(2)中所求的取值范圍內(nèi)的任意參數(shù)θ,函數(shù)f(x)在區(qū)間(2a-1,a)內(nèi)都是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x3-3x2cosθ+
132
,其中x∈R,θ為參數(shù),且0≤θ≤2π.
①當(dāng)cosθ=0時,判斷函數(shù)f(x)是否有極值;
②要使函數(shù)f(x)的極小值小于零,求參數(shù)θ的取值范圍;
③若對②中所求的取值范圍內(nèi)的任意參數(shù)θ,函數(shù)f(x)在區(qū)間(2a-1,a)內(nèi)都是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

滿足a,b∈{-1,0,1,2},且使函數(shù)f(x)=ax2+2x+b有零點的有序數(shù)對的個數(shù)為( 。
A、10B、12C、13D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(12分)已知函數(shù)fx)=sinxcosx-cos2x,其中為使函數(shù)fx)能在x= 時取得最大值時的最小正整數(shù).

   (1)求的值;

   (2)設(shè)△ABC的三邊a、b、c滿足b2=ac,且邊b所對的角的取值集合為A,當(dāng)xA時,求函數(shù)fx)的值域.

查看答案和解析>>

同步練習(xí)冊答案