分析 (Ⅰ)由已知圓C的極坐標(biāo)方程為ρ=2(sinθ+cosθ),即ρ2=2ρ(sinθ+cosθ),利用極坐標(biāo)與直角坐標(biāo)互化公式可得直角坐標(biāo)方程.由直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+t}\\{y=-1+t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程.
(Ⅱ)由圓的幾何性質(zhì)知點(diǎn)P到直線l的距離的最小值為圓心C到直線l的距離減去圓的半徑,利用點(diǎn)到直線的距離公式可得圓心C到直線l的距離為d,進(jìn)而得出.
解答 解:(Ⅰ)由已知圓C的極坐標(biāo)方程為ρ=2(sinθ+cosθ),即ρ2=2ρ(sinθ+cosθ),可得直角坐標(biāo)方程:x2+y2=2y+2x,
即圓C的普通方程為(x-1)2+(y-1)2=2.
由直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+t}\\{y=-1+t}\end{array}\right.$(t為參數(shù)),可得普通方程:x-y=3,∴直線l的普通方程為x-y-3=0.
(Ⅱ)由圓的幾何性質(zhì)知點(diǎn)P到直線l的距離的最小值為圓心C到直線l的距離減去圓的半徑,
令圓心C到直線l的距離為d,則d=$\frac{|-1+1-3|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$$>\sqrt{2}$,
∴點(diǎn)P到直線l的距離的最小值為$\frac{3\sqrt{2}}{2}-\sqrt{2}$=$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、參數(shù)方程化為普通方程、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 中心 | B. | 重心 | C. | 外心 | D. | 垂線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ab>a2 | B. | a2<b2 | C. | $\frac{1}{a}$<$\frac{1}$ | D. | $-\frac{1}{a}<-\frac{1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com