分析 (1)直線L:(2m+1)x+(m+1)y-7m-4=0,即 m(2x+y-7)+(x+y-4)=0,顯然過直線2x+y-7=0 及直線x+y-4=0的交點A,由$\left\{\begin{array}{l}{2x+y-7=0}\\{x+y-4=0}\end{array}\right.$,解得交點A的坐標.
(2)把 圓C的方程化為標準形式,求出圓心C的坐標和半徑,要使直線L被圓C截得的線段長度最小,需心C到直線L的距離d最大,d的最大為CA線段的長度,即可得出結(jié)論.
解答 (1)證明:直線L:(2m+1)x+(m+1)y-7m-4=0,即 m(2x+y-7)+(x+y-4)=0,顯然過直線2x+y-7=0 及直線x+y-4=0的交點A.
由$\left\{\begin{array}{l}{2x+y-7=0}\\{x+y-4=0}\end{array}\right.$,解得交點A的坐標為(3,1),
故直線L:(2m+1)x+(m+1)y-7m-4=0經(jīng)過定點A(3,1).
(2)解:圓C:x2+y2-2x-4y-20=0 即 (x-1)2+(y-2)2=25,表示以C(1,2)為圓心,以5為半徑的圓.
設圓心C到直線L的距離為d,要使直線L被圓C截得的線段長度最小,需d最大.由題意可知,d的最大為CA線段的長度.
由兩點間的距離公式可得CA=$\sqrt{5}$.
∴直線l被圓C截得的最短的弦長為2$\sqrt{25-5}$=4$\sqrt{5}$.
點評 本題主要考查直線過定點問題,直線和圓的位置關(guān)系的應用,判斷圓心C到直線L的距離d的最大為CA線段的長度,是解題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com