拋物線的準(zhǔn)線方程為               
y=-1   

試題分析:因?yàn)閽佄锞的焦點(diǎn)在y軸上,且p=2,所以準(zhǔn)線方程為y=-1。
點(diǎn)評:記熟拋物線的準(zhǔn)線方程為是做本題的前提條件。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知平面經(jīng)過點(diǎn),且是它的一個(gè)法向量. 類比曲線方程的定義以及求曲線方程的基本步驟,可求得平面的方程是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線與曲線有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

解答題(本題共10分.請寫出文字說明, 證明過程或演算步驟):
已知是橢圓上一點(diǎn),,是橢圓的兩焦點(diǎn),且滿足
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)、是橢圓上任兩點(diǎn),且直線、的斜率分別為、,若存在常數(shù)使,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列命題,其中正確命題的序號是          (填序號)。
(1)已知橢圓兩焦點(diǎn)為,則橢圓上存在六個(gè)不同點(diǎn),使得為直角三角形;
(2)已知直線過拋物線的焦點(diǎn),且與這條拋物線交于兩點(diǎn),則的最小值為2;
(3)若過雙曲線的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為,為坐標(biāo)原點(diǎn),則;
(4)已知⊙則這兩圓恰有2條公切線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求與橢圓有共同焦點(diǎn),且過點(diǎn)(0,2)的雙曲線方程,并且求出這條雙曲線的實(shí)軸長、焦距、離心率以及漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線,焦點(diǎn)為,頂點(diǎn)為,點(diǎn)在拋物線上移動(dòng),的中點(diǎn),的中點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)D是軸上的投影,M為D上一點(diǎn),且
(Ⅰ)當(dāng)的在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸的負(fù)半軸上,過點(diǎn)作直線與拋物線交于A,B兩點(diǎn),且滿足,
(1)求拋物線的方程
(2)當(dāng)拋物線上的一動(dòng)點(diǎn)P從A運(yùn)動(dòng)到B時(shí),求面積的的最大值.

查看答案和解析>>

同步練習(xí)冊答案